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Abstract

This paper provides the first global assessment of the energy implications of households’
climate change adaptation through air-conditioning. We pool household survey data from
25 countries and employ a discrete-continuous choice econometric framework to simultane-
ously estimate the adoption and utilisation of air-conditioning. After identifying how indi-
vidual drivers determine households’ adaptation behaviours, we combine the estimated re-
sponses with socioeconomic, demographic, and, climate change scenarios available at a high
spatial resolution to project future air-conditioning adoption and electricity demand, as well
as the contribution of individual determinants. On average, we find that air-conditioning
ownership increases households’ electricity consumption by 34%, but the effect is highly
heterogeneous, and it varies with weather conditions, income levels and across countries, re-
vealing the importance of behaviors, practices, climate, and technologies. Compared to other
socioeconomic, demographic, and climatic drivers of electricity demand, air-conditioning
has the leading marginal effect, and it can account for a significant share of households’ bud-
get. We then show that, especially in developing and emerging countries, age, education,
and urbanisation reinforce the positive, long-term effect of income and high temperatures
on air-conditioning adoption and electricity demand for space cooling. The overall effect of
socio-demographic, economic, and climatic drivers is a net increase in regional and global
air-conditioning electricity by 2050, with a related social cost $128-175 billion due to the ad-
ditional CO2 emissions. Our findings highlight electricity expenditure for air-conditioning
serves as an important benchmark for tracking a new dimension of energy poverty related
to the need of space cooling. Moreover, our projections point at the emerging risk associated
with this form of households’ adaptation.
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1 Introduction

Climate change is affecting a growing number of people (Pörtner et al., 2022; Dyer, 2022) and
heat exposure is increasing in most places (Biardeau et al., 2020; Jay et al., 2021) as a result of
co-occurring trends such as rising temperatures and inequalities, informal urbanization, and
population aging (Carr et al., 2023). Air-conditioning is spreading quickly, often advertised as
the only available adaptation action to cope with high temperatures (Turek-Hankins et al., 2021).
Air-conditioning indeed provides protective effects as demonstrated by the significant reduction
in morality (Barreca et al., 2016), by the ameliorative effects on learning outcomes (Park et al.,
2020) and in mental health (Hua et al., 2022). However, its widespread usage carries important
repercussions on households’ expenditure and welfare (Mansur et al., 2008; Randazzo et al.,
2020; Barreca et al., 2016), on economy-wide energy demand and electricity systems (Auffham-
mer and Mansur, 2014; Auffhammer et al., 2017), on air pollution, greenhouse gases (GHGs)
emissions (Colelli et al., 2022), and climate policy (Rode et al., 2021). These repercussions, how-
ever, have only implicitly being quantified.

This paper provides the first global-scale, micro-founded empirical quantification of the actual
electricity used for air-conditioning by applying a two-stage discrete-continuous framework that
makes it possible to evaluate the long-term effects of climate change through household-level
data. The paper uses a newly assembled global cross-sectional, multi-country database tracking
households’ expenditure patterns, energy behaviours in terms of electricity consumption and
acquisition of air conditioners in 25 countries located in various continents, representing 62 per-
cent of the world’s population and accounting for 73% of the global electricity consumption to
assess the current and future demand and expenditure for air-conditioning electricity in the res-
idential sector.

As a guidance for the empirical analysis, we develop a simple adaptation model to frame two
of the main adaptation strategies households can use to cope with extreme heat, namely air-
conditioning adoption (extensive margin) and use (intensive margin), in the context of a house-
hold’s welfare maximisation. Based on this framework, we then apply the discrete-continuous
econometric model first developed by Dubin and McFadden (1984) to estimate the contribution
of households’ adaptation behaviours in the form of air-conditioning adoption and utilisation to
electricity consumption. Our approach properly accounts for the correlation that exists between
the two adaptation decisions, and it can identify the long-term effects of temperature on elec-
tricity consumption.

We find that on average households owning air-conditioning consume 34% more electricity con-
sumption than those without the technology. This response is increasing but concave in temper-
ature, with the effect reaching a peak at 67%. We document a significant heterogeneity across
across income levels and across countries. We discuss how the different saturation with temper-
ature, and the different marginal effect is suggestive of differences in practices, behaviours and
technologies.

To situate our findings within the context of demand-side responses to climate mitigation, we
compare the energy impact of air-conditioning to that of income and other socio-economic and
demographic drivers through a descriptive meta-analysis of the standardised coefficients ob-
tained from country-specific regressions. Factors such as education, gender, age, urbanisation,
and housing quality have all been show to play a role in explaining energy use and expenditure
patterns in both various high-income countries and in emerging economies such as India (Ameli
and Brandt, 2015; Krishnamurthy and Kriström, 2015). Our evidence goes in this direction, but it
also indicates that, when available, air-conditioning is the leading factor influencing residential
electricity consumption. The rising attention to the social aspects of energy demand is also ev-
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ident in the latest assessment report of the Intergovernmental Panel on Climate Change, which
brings a novel focus on the social aspects of mitigation (Creutzig et al., 2022) and on the non-
technical determinants of electricity demand in buildings (IPCC 2022).

Furthermore, we use our estimated coefficients to simulate for each household the amount of
electricity used for running air-conditioning systems. We then transform this quantity into ex-
penditure to test the impact of air-conditioning on households’ budget. The results highlight a
cooling-related dimension of energy poverty, with several poorer households owning air condi-
tioners spending more than 5% of their budget on electricity for cooling. As we move along the
income distribution, the burden decreases with high income households allocating less than 1%
of their expenditure on air-conditioning use.

We then combine our estimates with projections of climatic, economic, and socio-demographic
drivers to quantify future air-conditioning prevalence and space cooling electricity consumption
in the residential sector. Residential space cooling demand would soar. The average household
would increase its average annual demand for space cooling electricity from 1,979 kWh in 2020
to 2,100-2,300 kWh in 2050. On average, families in 2050 will almost reach the amount of elec-
tricity today used by the United States, about 2,515 kilowatt-hour per year. Yet, the economic
burden on households will be highly diverse, as already today low-income families allocate to
space cooling electricity expenditure between 10% and 0.6% of their budget. This is in sharp
contrast with the much smaller share of richer families, which goes from 4% to 0.2%.

We conclude by providing back-to-the-envelope calculations of the potential repercussions for
energy and climate policy of the surge in residential cooling demand. First, taking India as an
example, we show that Indian electricity peak generation capacity should be expanded by 37%
to 48% to satisfied peak electricity demand from future air-conditioning use. Second, we es-
timate that future residential air-conditioning demand would induce an increase in emissions
by 692-948 MtCO2 in 2050, generating a ”Social Cost of Cooling” of 128-175 billion USD. Our
findings so identify the potential emerging risks associated with this form of households’ adap-
tation, and the potential interplay between mitigation and adaptation objectives.

Our paper contributes to the literature on how residential electricity consumption (Deschênes
and Greenstone, 2011; Davis and Gertler, 2015; Auffhammer, 2022) responds to climate change
by explicitly measuring the specific contribution of air-conditioning. Recent research has un-
covered the determinants of the air-conditioning adoption decision in both emerging economies
(Pavanello et al., 2021; Falchetta and Mistry, 2021) and developed countries, (De Cian et al.,
2019) and at the global scale (Andrijevic et al., 2021; Davis et al., 2021). Income is the leading
driver in less affluent, hot areas (Davis and Gertler, 2015; Davis et al., 2021; Pavanello et al.,
2021), whereas temperate, industrialised countries respond relatively more to thermal discom-
fort arising from more frequent hot days (De Cian et al., 2019). Yet, air-conditioning adoption
patterns only partly correlate with actual use (Ara Begum et al., 2022), which in turn relates
to socioeconomic conditions as well as to the actual real-feel temperature experiences. There
is substantial evidence documenting the relationship between meteorological or climatic con-
ditions and energy use (Auffhammer and Mansur, 2014; Deroubaix et al., 2021) for individual
countries (Davis and Gertler, 2015; Zhang et al., 2020), multiple countries (Davis et al., 2021),
cities (Romitti and Sue Wing, 2022), and even all world’s regions (Van Ruijven et al., 2019). Yet,
electricity consumption for specific end uses, such as cooking, space heating and cooling, is usu-
ally not metered, and it can only be estimated indirectly by using engineering (Bezerra et al.,
2021) or econometric methods (Obringer et al., 2022). Two studies seek to empirically combine
the intensive and extensive margin effects (Davis and Gertler, 2015; Auffhammer, 2022). Davis
and Gertler (2015) stratifies electricity demand responses according to air-conditioning pene-
tration in Mexico. The authors estimate the intensive margin in Mexican states with currently
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high levels of air-conditioning penetration. These response functions are used to project how
households in the other Mexican states would behave if they were to reach the same level of
air-conditioning penetration. There are two main drawbacks in their approach. First, there is
no correction for sample selection of households that are more likely to own an air conditioner.
Second, they use two different samples for the electricity demand and the computation of the
average air-conditioning penetration rates. Auffhammer (2022) only uses electricity demand ob-
servations of individual households. Here, the method consists of, initially, modelling demand
regression with location-varying responses to contemporaneous temperature shocks, and subse-
quently modelling the responses’ coefficients as a function of long-run zonal climate to estimate
the long-run effects. Critically, this method is specific for the case when only household-level
billing data are available, but the air-conditioning ownership is unknown. This is not the case
for our work. Our two-stage discrete-continuous framework allows to obtain the long-term ef-
fects of temperature, when the same household-level data are available for both the intensive
and extensive margin in a cross-sectional setting.

Another important novelty of this paper is that we identify not only the average marginal effect
of air-conditioning on electricity demand, but we also characterise how utilisation is modu-
lated by actual climatic conditions. The few existing econometric studies in the field have only
quantifying the average effect of air-conditioning ownership on electricity demand (Randazzo
et al., 2020). The quantification of the actual electricity consumed and of the related expenditure
for space conditioning provides new inputs for updating the academic and policy discussion
around the topic of energy poverty. Energy poverty has traditionally been defined in relation
to the need to keep a house warm (Bradshaw and Hutton, 1983), and it has yet to conceptually
include the notion of poverty arising from cooling needs.

The remainder of the paper is organised as follows. Section 2 presents our newly constructed
dataset and some descriptive statistics. Section 3 provides the theoretical framework underlying
our analysis. Section 4 shows our empirical approach. Results are discussed in Sections 5 and 6,
and the concluding remarks in Section 7.

2 Data

2.1 Household survey data

We assemble a globally-relevant household micro-data database covering a large number of sub-
national administrative units from 25 countries.1 Together, these countries represent 62 percent
of the world’s population and account for more than 70% of the global electricity consump-
tion. Table 1 lists the countries included in the database, the macro-region of belonging, the
year(s) when the interviews were carried out, and the number of households included in the
final pooled database for each country. Overall, our data set includes 673,219 households.

For each survey we gather information on annual electricity expenditure and quantity consumed
(when available), air-conditioning ownership, total household expenditure, and several socio-
economic and demographic variables. We limit our sample to the households that do not show
missing values neither for air-conditioning nor for electricity use. This means that our analysis
excludes households that did not have access to electricity at the survey year.

When electricity quantity was not available in the survey, we augment the data set with informa-
tion on average electricity prices to calculate electricity quantity implied by electricity expendi-
ture. Electricity prices are either directly obtained dividing electricity consumption by quantity

1See also Figure S2 for an account of the countries in our dataset.
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or collected at country or sub-national level from external sources.2

Similarly, the variable indicating whether a household lives in urban or in a rural area is not
reported for all countries and - where reported - the definition of a urban household varies
across countries. For these reasons, we also collect gridded data on urbanisation from Gao and
Pesaresi (2021) to construct population-weighted shares at the sub-national level, and attribute
this newly generated continuous variable for urbanisation to each household located in that
corresponding sub-national region.

Table 1: Household survey microdata sources and details

Country Year of wave analysed Region Primary source N◦Households

Canada 2011 North America EPIC 480
United States of America 2003-2021 North America AHS 68,160

Mexico 2018 Central America INEGI 62,265
Brazil 2017 / 2018 Southern America IBGE 46,945

Argentina 2017 / 2018 Southern America ENGHO 19,868
Sweden 2011 Europe EPIC 448

Switzerland 2011 Europe EPIC 199
Netherlands 2011 Europe EPIC 447

France 2011 Europe EPIC 667
Germany 2019 Europe SOEP 5,299

Spain 2011 Europe EPIC 515
Italy 2019 Europe HBS 17,244

Nigeria 2019 Africa GHS 1,200
Ghana 2017 Africa GLSS 6,812
Kenya 2015 / 2016 Africa IHBS 5,863

Burkina Faso 2014 Africa EMC 1,980
Niger 2014 Africa ECVMA 858

Malawi 2019 / 2020 Africa IHS 1,234
Tanzania 2017 / 2018 Africa HBS 9,191
Pakistan 2018 / 2019 Central Asia LSM-IHS 19,506

India 2019 Central Asia CHPS 167,238
China 2014 Eastern Asia CFPS 10,852
Japan 2011 Eastern Asia EPIC 247

Indonesia 2017 Eastern Asia SUSENAS 224,103
Australia 2011 Oceania EPIC 527

Total 673215

2.2 Historical climate data

We describe the meteorological and climatic conditions influencing energy demand by using
the degree-days methodology commonly applied in the energy sector (ASHRAE, 2009; Scott
and Huang, 2008). Because the thermal comfort in buildings relates to both cooling and heating,
the degree-days have been developed with the corresponding dual concepts of Cooling and
Heating Degree Days (CDDs and HDDs). HDDs and CDDs are represented as temperature
sums in degree Celsius day, and they are defined as the cumulative sum of days, within a year,
with daily average temperature above (CDDs) or below (HDDs) the temperature threshold, T∗

(Deroubaix et al., 2021):

CDD =
365

∑
d=1

(γd)(T − T∗) and HDD =
365

∑
d=1

(1 − γd)(T∗ − T)

where γd is the binary multiplier.

CDDs and HDDs are computed for each grid cell, and then aggregated to the sub-national geo-
graphical unit. We construct meteorological CDDs and HDDs as the annual value calculated at

2See Appendix for more information on how we assemble the data set.
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the survey year. Climatic CDDs and HDDs are defined as the approximately 30-year average of
the annual CDDs and HDDs across the period 1970-survey year. We obtain daily average dry-
bulb temperature to calculate Cooling and Heating Degree Days (CDDs and HDDs) at each year
and grid cell from the ECMWF’s ERA-5 historical climate reanalysis data (Hersbach et al., 2020),
covering the period 1970-2019, and having a spatial resolution of 0.25 arc-degrees. We adopt the
temperature threshold of 18 ◦C.3 Moreover, we also calculate CDDs and HDDs data from Global
Land Data Assimilation System (GLDAS) (Beaudoing et al., 2020) to assess the robustness of our
estimates. Household data are then merged with the resulting HDDs and CDDs at the most
disaggregated geographical information available (e.g. provinces or districts), and all grid cells
within each administrative unit are collapsed by taking a population-weighted average in order
to represent temperature exposure for the average person within a sub-national administrative
unit.

2.3 Descriptive Statistics

Table 2 describes the average households’ characteristics for the global pooled dataset, while
country-specific descriptive tables are found in Tables S2-S13 in the Appendix.

Table 2: Weighted Descriptive Statistics

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 2358.83 3799.80 253.56 650.99 1260.00 2424.24 5023.02
Air-conditioning (Yes = 1) 0.25 0.43

Climate and weather

CDD (100s) 15.94 10.86 2.94 6.22 12.80 27.09 30.19
CDD (100s) 16.81 11.06 3.32 7.12 14.01 27.70 31.29
HDD (100s) 12.00 14.38 0.00 0.05 4.33 21.57 31.32

Socio-economic and demographic

Total Expenditure ($2011 PPP) 15733.86 33771.18 1313.22 3544.04 6545.82 14297.35 37928.57
Electricity Price ($2011 PPP / kWh) 0.19 0.14 0.10 0.12 0.15 0.24 0.33
Urbanisation Share 0.07 0.11 0.00 0.01 0.03 0.10 0.20
Home Ownership (Yes = 1) 0.82 0.38
Household Size 3.91 2.25 2.00 2.00 4.00 5.00 6.00
No Education (Yes = 1) 0.28 0.45
Primary Education (Yes = 1) 0.28 0.45
Secondary Education (Yes = 1) 0.31 0.46
Post Education (Yes = 1) 0.14 0.34
Age of Household Head 34.94 25.55 0.00 0.00 39.00 55.00 66.00
Female Household Head (Yes = 1) 0.32 0.47 0.00 0.00 0.00 1.00 1.00

Observations 673215

Notes: Descriptive statistics are computed survey weights.

Focusing on the two main dependent variables, across the pool of the 25 countries considered,
on average, a household consume 2,359 kilowatt-hour (kWh) per year, whereas air-conditioning
prevalence is around 25%. A high degree of heterogeneity in the distribution of both variables
is observed across and within countries.

3We additionally construct cooling and heating degree days with temperature threshold of 24 and 15 ◦C respec-
tively
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Figure 1: Panel A: Air-conditioning prevalence; Panel B: Median household electricity consumption; Panel C: Median historical CDDs; Panel D:
Median household total expenditure, by country.
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Figure 1 suggests that the between-country difference in cooling energy (Panels A and B) is
highly explained by the income level (approximated by the total expenditure shown in panel
D). For instance, in the United States, the median household uses the highest amount of elec-
tricity and consumes about five times more than a median household in a developing country
irrespective of a generally smaller household size. Crucially, areas with a warmer climate in-
stead display lower levels of electricity demand and air-conditioning penetration. Indeed, the
countries with the highest ownership of air-conditioning are United States, Japan and Australia,
whereas the lower rates are reported in Africa and in South-East Asia. However, the within-
difference across households in the same country is also important to explain the patterns in
cooling energy, with the interaction between warm temperatures and income driving the adop-
tion and use of air conditioners (Figure S1). Looking at the other determinants, most of the
families own their dwelling (82%), and they usually consist of four members. Male heads of
households are slightly predominant (68%), whereas their educational background is quite het-
erogeneous, with 31% having at least a secondary education degree.

3 Theoretical framework

To estimate the long-term temperature effects on household electricity consumption, we intro-
duce a simple adaptation model. Here, households derive a long-run utility, u, from the con-
sumption of a generic good, x, and from being in a situation of thermal comfort, T:

u = u(T, x) (1)

where ∂u
∂T > 0 and ∂u

∂x > 0. Thermal comfort can be defined as a function of current climatic
conditions c, and electricity quantity q, as changing energy habits is one of the main form of
autonomous adaptation directly available to households:

T = f (c, q(c)) (2)

Households then maximize their utility subject to Equation 2 and a budget constraint (Equation
3) defined over total income, y, generic expenditure on x, and adaptation costs k(q(c)):

x + k(q(c)) ≤ y (3)

While thermal discomfort can be defined as any deviation for a so called bliss point in which
neither heating or cooling is required, here we focus on thermal comfort in situations of hotness
relative to long-term expected climatic conditions. Since both thermal comfort and electricity
quantity depends on c, we totally differentiate the production function of thermal comfort, and
write:

dT
dc

=
∂T
∂c︸︷︷︸

direct effect

+
∂T
∂q

dq
dc︸ ︷︷ ︸

role of cooling

The decomposition of the total derivative shows that (1) temperature changes directly impact
thermal comfort, with ∂T

∂c < 0; (2) adaptation intervenes as temperature increases demand for
cooling, with dq

dc > 0, and so ∂T
∂q

dq
dc > 0.4

Thermal comfort is one the strongest driver of air-conditioning demand and use (Jay et al., 2021),
and therefore we assume that households can effectively increase their thermal comfort through

4In line with Mansur et al. (2008), we assume that marginal adaptation costs are not affected by climate change.
This means that (1) average electricity prices are not affected by climate change: ∂pq/∂c = 0; (2) the capital expendi-
tures from purchasing air-conditioning in response to climate change are relatively small.
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air-conditioning. A range of other cooling strategies exists, especially in countries that have
always been coping with high temperature and humidity levels. In India, for example, fans
are still preferred to air-conditioning and air coolers (Khosla and Bhardwaj, 2019). However,
as soon as households cross certain income thresholds they seem to switch to air-conditioning
(Pavanello et al., 2021). Moreover, the effectiveness of fans has being only marginally assessed
(Malik et al., 2022). Here, we are interested in adaptation strategies that, from the household’s
perspective, entail an opportunity cost and pose an economic trade-off between thermal comfort
and energy use. This implies that households maximise their utility with respect to a demand of
electricity that is conditional on the ownership of air conditioning, a:

q = q(c) → q = q(c | a)

where a indicates whether household owns at least an air-conditioner, and it is a function of
long-term climatic conditions c and average energy efficiency of the appliances e:

a = a(c, e)

Whereas the intensive margin q is a short-run response to temperature changes, the extensive
margin a represents a long-run process. By solving the first order conditions of a household max-
imizing utility subject to the budget constraint, we obtain the equilibrium condition equalizing
the marginal cost and the marginal benefit of adaptation:

∂k(q∗(c | a))
∂q(c|a)︸ ︷︷ ︸

marginal cost of adaptation

= MRST,x
∂ f (c, q∗(c | a))

∂q(c | a)︸ ︷︷ ︸
marginal benefit of adaptation

(4)

Assuming a linear adaptation cost function in electricity price, pe, and in the capital cost of air-
conditioning, pa, so that k(q(c)) = peq(c) + pa, we can re-write the equilibrium condition as
follows:

pe = MRST,x
∂ f (c, q∗(c | a))

∂q(c | a)
(5)

where MRS is the marginal rate of substitution between thermal comfort and the generic good
x, ∂u/∂T

∂u/∂x .

Final conditional demand for electricity quantity q is then:

q∗ = q(c, pe, y | a(c, e))) (6)

Equation 6 implies that, in order to determine the long-term effects of climate change on a house-
hold’s electricity consumption, we need to simultaneously identify the two margins of adapta-
tion: 1) the effects of contemporaneous meteorological conditions c, and 2) the effect of long-term
climate conditions c through air-conditioning adoption.

4 Empirical framework

Equation 6 implies that households simultaneously decide both the intensive margin, the change
in electricity use for a given level of air-conditioning stock, and the extensive margin, the adjust-
ment of the air-conditioning stock. We estimate the optimal conditional electricity demand by
using a discrete-continuous choice model in which households simultaneously decided about
air-conditioning adoption (a) and how much electricity to consume to operate it (q). We model
the intensive margin, namely the demand for electricity, as follows:

Qic = β0 + β1ACic + β2ACic × f (CDDd(i)c) + β3 f (CDDd(i)c)+

+ β4Yic + β5Pic + β6Zic + µc + ε ic
(7)
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where Qic is the natural logarithm of electricity demand (in kWh) of household i in country
c. ACic is a dummy variable taking value 1 if household i has an air conditioning installed in
its dwelling, 0 otherwise. The function f (CDDd(i)c) is a second-degree polynomial of the con-
temporaneous, annual CDDs experienced in the administrative area d in country c during the
survey year, reflecting the nonlinear response of electricity to temperature (Davis and Gertler,
2015; Auffhammer, 2022). The interaction ACic × f (CDDd(i)c) tests whether air-conditioning
amplifies electricity demand increases when heat exposure goes up or it occurs in warmer loca-
tions. We expect that the relationship to be concave, reflecting the limited operationability of air
conditioners (a household cannot consume more than a certain amount of kWh) and the dimin-
ishing returns of adaptation to temperature once the bliss point of thermal comfort is achieved.
The variables Yic and Pic are respectively the natural logarithm of total household expenditure5

and of average electricity prices in $2011 PPP. We also include a vector Zic of household and
housing characteristics.6 We account for time-invariant, country-level, unobservable factors by
including country-fixed effects µc. The error term ε i captures the remaining unobserved varia-
tion.

The coefficients of air-conditioning are likely to be endogenous with respect to electricity de-
mand, generating correlation between the error term, ε i, and ACic. First, there may be simul-
taneity as electricity demand and air-conditioning ownership decisions are unlikely to be inde-
pendent. Second, the two decisions share unobserved common determinants. For instance, the
natural ventilation of a housing unit is likely correlated with both the adoption and the use of
air conditioners.

These issues can addressed by estimating Equation 7 with a discrete-continuous approach, as in
Davis and Kilian (2011) and Barreca et al. (2016), with the methodology first proposed by Dubin
and McFadden (1984). This consists of a control function approach that allows the error terms
in the indirect utility function underlying the decision to own or not own an air conditioner to
be correlated with the error terms in the electricity demand equation. Specifically, we assume
that (1) the errors in the air-conditioning ownership decision are independent and identically
distributed extreme value type I, and (2) the error terms in the electricity demand equation
are a function of the errors in the air-conditioning decision equation, essentially capturing the
unobservable factors that influence air-conditioning and might affect electricity as well. We
control for the correlation among the errors in two equations by including a correction term
that is constructed with the predicted probabilities (π) from a first-stage, logit regression with
air-conditioning as dependent variable:

ACic = γ0 + γ1 f (CDDd(i)c) + γ2Yic + γ3 f (CDDd(i)c)× Yic + γ4 f (CDDd(i)c)+

+ γ5Pic + γ6Xic + γ7Zic + µc + ηic
(8)

where f (CDDd(i)c) is a second-degree polynomial of the long-term CDDs experienced in admin-
istrative area d in country c across the period 1970-year before the survey. The vector Xic contains
interactions of electricity prices with CDD, household size, and home ownership. Hence, our
identification comes from a combination of the logit functional form and the exclusion from the
second stage of the long-term CDDs and of the various interaction variables. The estimable
demand equation then reads as follows:

Qic = β0 + β1ACic + β2ACic × f (CDDd(i)c) + β3 f (CDDd(i)c)+

+ β4Yic + β5Pic + β6Zic + ζ̂ic + µc + ε ic
(9)

5We use total expenditure as a proxy for income, which is not available for all household surveys.
6We include the socioeconomic and demographic variables that are available for all the countries. Particularly,

we control for a second-degree polynomial of contemporaneous annual heating degree days, regional urbanisation,
education level of the head, age of the head, gender of the head, household size and home ownership.
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where ζ̂ic denotes the correction term, which defined as a function of the predicted probabilities,
π̂, from the first stage:

ζ̂ic =
π̂ic lnπ̂ic

1 − π̂ic
+ lnπ̂ic

The correction term is essentially approximating all factors in ε ic that are correlated with ACi
(Wooldridge, 2015). In both first and second stage, we apply survey weights to make our results
representative for the whole population.

Two main concerns remain for our empirical strategy. First, our average electricity prices are
here likely to be endogenous. For some households, prices are computed by dividing electric-
ity expenditure by quantity. This leads to the problem that the average price depends on the
quantity consumed by the household, creating simultaneity, and so endogeneity in the demand
equation. At the same time, for some countries we collect aggregate prices at either the sub-
national- or the country-level, and measurement error can be another cause of endogeneity. In
our empirical strategy we prefer not to address the endogeneity of prices. We use prices mainly
as a control variable and we are not interested in price elasticities. Moreover, projections con-
sidering the role of prices would require either a methodology based on a general equilibrium
approach or assumptions about future price regimes in all the countries (Auffhammer, 2022). We
perform some robustness checks, such as excluding electricity prices or including interactions of
electricity prices with income decile dummies. Second, our data do not provide any information
about the efficiency level of air conditioners owned by households. By including income, we
may control for richer households being more likely to adopt more efficient appliances.7 How-
ever, consumers may face a trade-off between the adoption of more efficient cooling appliances
— which can lower electricity consumption at constant output of cooling (technology effect) —
and the increased willingness and ability to pay with more efficient appliances and higher in-
come (rebound effect). If the technology effect prevails, the marginal effect of air-conditioning
on electricity consumption decreases with income. If the rebound effect prevails, the marginal
effect of air-conditioning on electricity might increases over time.

5 Results

We first estimate a global, pooled model across all countries to characterise the average relation-
ship between air-conditioning, electricity demand, and the set of covariates. We uncover the
role of income, climate, and of other socioeconomic and demographic characteristics. We then
examine the heterogeneity of these effects across income levels and countries. Finally, we con-
textualise the role of air-conditioning as a driver of electricity demand with respect to the other
determinants, and we explore the potential implications of owing air-conditioning on house-
holds’ budget.

5.1 The effect of air-conditioning on residential electricity consumption

Table 3 shows the estimated impacts of air-conditioning ownership on a household’s electricity
consumption. We first estimate Equation 7 as a baseline for the analysis (Column 1-3). When
air-conditioning is not considered as endogenous, we find that owning at least an air conditioner
increases the electricity demand by 36-60%, ceteris paribus. However, as previously discussed,
these estimates are likely to be biased.

In Column 3, we address air-conditioning’s endogeneity. The correction term is always signifi-
cant and negative (Table B1), suggesting that it is important to control for endogeneity and that

7Air-conditioning is not as spread as other technologies like refrigerators or washing machines. We may so expect
high income households to adopt more energy efficient air-conditioning systems.
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the OLS estimates are upward biased.8 Compared to previous specification, we find a significant
and smaller effect of air-conditioning. Having the technology installed in the dwelling increases
households’ electricity consumption by 34%. In Column 4, we also add the interaction terms be-
tween air-conditioning and CDD. On the one hand, at zero CDDs, air-conditioning is not used.
On the other hand, critically, we find that the effect of air-conditioning is increasing and concave
in weather conditions (Figure 2). When households are exposed to warmer temperatures, the
impact of air-conditioning reaches 67%.

Table 3: The Effect of Air-conditioning on Residential Electricity Consumption

OLS OLS DMF DMF
(1) (2) (3) (4)

AC 0.601∗∗∗ 0.363∗∗∗ 0.336∗∗∗ −0.122∗∗

(0.033) (0.031) (0.037) (0.058)
AC × CDD 0.052∗∗∗

(0.008)
AC × CDD2 −0.001∗∗∗

(0.000)

Controls NO YES YES YES
Correction Term NO NO YES YES
Country FE YES YES YES YES

R2 0.651 0.721 0.721 0.725
Countries 25 25 25 25
Observations 673215 673215 673215 673215

Notes: Dependent variable: logarithm of electricity consumption
(kWh) - (1), (2), (3) and (4) clustered standard errors at the ADM-1
level in parentheses; *p < 0.10, **p < 0.05, ***p < 0.01. Regressions
are conducted using survey weights. For DMF Columns the first
stage is shown in Table B2 Columns 3-4. ”Controls” include natural
logarithm of electricity price, and weather and socio-economic and
demographic variables.

The coefficients of the other covariates (Table B1) are in line with recent studies that have ex-
plored the determinants of electricity consumption across multiple countries (Randazzo et al.,
2020; Pavanello et al., 2021). We find a positive effect of total household expenditure on electric-
ity consumption. A 1% rise in total expenditure increases electricity consumption by 0.38% in
our preferred specification. Contrary, contemporaneous weather conditions — CDD and HDD
— do not have a significant effect once we introduce the interactions with air-conditioning. As
for electricity prices we find an elasticity of -0.39, which is in the range of previous estimates.9

However, as discussed, it has to be interpreted cautiously. Urbanisation share has a negative,
but not significant effect. A negative sign of urbanisation is a common finding especially in de-
veloped countries (Randazzo et al., 2020).10 However, the literature points at an opposite results
in developing countries (Agrawal et al., 2019; Pavanello et al., 2021). This means that there are
two competing mechanisms at play and, at the global level, and the former slightly prevails. Our
findings also suggest that age and gender of the household head, household size, home owner-
ship and education level are all positive determinants of residential electricity consumption.

8A reason for the positive bias that owners of air-conditioning appliances are positively selected.
9See Table 1 in Boogen et al. (2021) for a selected review.

10In developed countries urban households consume less electricity compared to rural households, who tend to
own larger and less efficient dwelling and consumer more electricity.
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Figure 2: Marginal effects of air-conditioning ownership on household electricity consumption
for different level of cooling degree days. Confidence intervals: statistical significance level
at 95%. Red dashed line: pooled estimate (Table 3, Column 3). Background: distribution of
population-weighted cooling degree days.

Table B2 report the estimates from the air-conditioning adoption’s model. Column 1-2 show
the results from a linear probability model (LPM), whereas Column 3-4 depicts the coefficients
and marginal effects from the logit regression, that is our first-stage results. Again, our findings
are consistent with the existing literature (De Cian et al., 2019; Randazzo et al., 2020; Pavanello
et al., 2021; Davis and Gertler, 2015; Davis et al., 2021). We find that long-term climate conditions
significantly shape air-conditioning ownership. The relationship between air-conditioning and
concave, resembling a typical adoption curve. At the averages, a 100 degree days increase in
the long-term average of CDD makes the probability of adopting the technology grow by 4.4
percentage points. This effect is increasing in expenditure, suggesting again the importance of
the income-climate relationship. Expenditure indeed remains a key driver, as air-conditioning
ownership increases by 0.02 to 0.09 percentage points when expenditure grows by 1%. Finally,
regional urbanisation, household size, house ownership, household head age, education, and
gender are all significant drivers of air-conditioning adoption.

5.2 Heterogeneity

The additional electricity needs that can be attributed to the ownership of air-conditioning vary
significantly across income groups and countries. Our model detects whether a household owns
at least an air-conditioning unit and how the intensity in usage varies with temperature. A
higher intensive margin could mean that a household operates for more hours an air condi-
tioners or that more units are being used depending on the indoor and outdoor temperature
conditions.

To identify the heterogeneous effect of air-conditioning across income levels, we re-estimate our
model globally but by using country-specific expenditure quintiles (Table B3). Panel A of Fig-
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ure 3 shows that the total effect11 of air-conditioning on electricity is greater for households
in the second and in the fifth income quintiles. On average, air-conditioning owners in the
third- and fourth-income quintiles add about 33 to 35% to their average annual electricity bill
when operating this space cooling option, whereas households in the second and fifth quintiles
would use 38-41% electricity more when operating their air conditioners. We speculate this evi-
dence points at some efficiency gain, in terms of housing and appliances, as we move to middle
income groups, which get outstripped when higher affluent levels are reached. Even though
richer households are more likely to have more energy efficient appliances, they can also afford
to use them longer and more frequently, leading so to higher level of consumption. We cannot
really observe whether the increase in air-conditioning electricity with income also reflects the
presence of the rebound effect, and whether households run their space cooling appliances more
because they are more efficient.

Figure 3: Marginal effects of air-conditioning ownership on household electricity consumption,
by country-specific expenditure quintile: (A) Total effects; (B) Effects at different CDD levels.
Confidence intervals: statistical significance level at 95%. Red dashed line: pooled estimate
(Table 3, Column 3).

The inverse U-shaped relationship between air-conditioning electricity and income is also doc-

11With the expression ”total effect” we mean that it is the sum of all the partial derivatives computed at the CDD
mean value.
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umented in Panel B of Figure 3, which depicts how, across the income distribution, households
utilise air-conditioning when exposed to different temperatures. Families in the low-income
quintiles reach a maximum level of air conditioning utilisation ealier compared to the richer
quintiles, and air-conditioning capacity seems to saturate at about 1,800 CDDs. This is likely
due to the fact poorer households have appliances with less cooling capacity (e.g. less efficient
or also fewer air-conditioning units). Among wealthier families, air-conditioning use increases
rapidly and it flattens at CDDs above 2,000. Middle income families in the third quintile do not
even reach a maximum level or a plateau.

The differential shape of the response functions across income groups is indicative of variation in
adaptive capacity of households. This means that they are those which can really respond when
exposed to warm weather, whereas poorer households cannot handle electricity consumption
with the same flexibility. We cannot really observe whether the increase in air-conditioning elec-
tricity with income reflects a greater use of more efficient appliances (e.g. rebound effect) or
simply a greater number of air-conditioners, but it is reasonable to assume that richer families
will be able to afford more efficient air conditioners and the number of air-conditioning units a
households can have saturates quickly.

The tension between more efficient technologies and behaviours, on the one hand, and the
large cooling needs, on the other hand, is also visible in the declining marginal effect of air-
conditioning on electricity demand as we move from the hottest regions — located in Africa,
India, and Indonesia —, to more temperate regions — such as Italy, Europe, Argentina, Aus-
tralia, Canada, and Japan, and the United States (Figure 4).12 The coldest countries are also the
more affluent ones, in which households, on average, can afford better technologies and there-
fore can achieve thermal comfort with less electricity. Higher income can also be associated with
better housing conditions, such as walls and window insulation but also with more squared me-
ters to cool down.

Air-conditioning increases average electricity consumption between 80% in Africa, 10% in Italy,
and 3% in non-European OECD countries. Countries seem to cluster into three groups. Africa
and Indonesia in which electricity demand of the the average household with an air conditioner
exceeds that of no-AC owners by more than 50%, a group of countries for which the additional
contribution ranges between 25 and 50% and a third group of hot and cold countries for which
the additional electricity for space cooling is below 25%.

12To obtain Figure 4 we run country-specific regression. As of the low number of observations, countries from
the EPIC survey are grouped in two groups: OECD-EU (France, Netherlands, Spain, Sweden and Switzerland) and
OECD-NonEU (Australia, Canada and Japan). Differently from the global regression, the country-specific regressions
include regional fixed-effects rather than country fixed-effects. When the most disaggregated administrative unit
available in the country survey is ADM-2, we use ADM-1 units as fixed effects. When only ADM-1 areas are available,
we construct macro-region variables to use as fixed-effect. Moreover, when available, we also add to the regression
as a further control a measure of housing quality.
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Figure 4: Marginal effects of air-conditioning ownership on electricity consumption by country.
Estimates are obtained from country-specific models. Countries are ordered based on their total
expenditure per capita. Confidence intervals depict statistical significance level at 95%. Black
dashed line corresponds to the pooled estimate.

5.3 Air-conditioning and the role of other influencing factors

Air-conditioning emerges as a leading factor shaping households’ final electricity use. Figure 5
compares the role of air-conditioning to that of other socioeconomic and demographic drivers,
including total income, age, gender, education, housing characteristics, home ownership, house-
hold size, and urbanisation through a descriptive meta-analysis of the standardised coefficients
obtained from country-specific regressions.

The ownership of air-conditioning is the single most important factor influencing a household
electricity’s consumption, with a median impact of above 30% (Figure 5), followed by total ex-
penditure, electricity prices, housing quality,13 and household size. Heating degree days are
also relevant, but only for few countries. Air-conditioning and housing tend to have a much
smaller dispersion compared to socioeconomic factors, such as income or household size. Air-
conditioning holds a prevailing role in both OECD and non-OECD countries (Figure B1), while
other factors seem to have opposite effects depending on the region. Economic conditions has a
median effect comparable to that of air-conditioning in non-OECD countries, whereas in OECD
countries the effect is quite small. The sign of urbanisation is also region-specific. This finding
is consistent with the previous literature, and it is likely associated with housing efficiency, size
considerations as well as type and quality of urbanisation (Bhattacharjee and Reichard, 2011).
For instance, Muratori (2014) finds that in the United States the average electricity consump-
tion of rural households is about 50% larger than urban ones irrespective of similar household
sizes. This is mostly owing to larger housing size and less efficient construction materials and
appliances efficiency. Notably, the urbanisation rate of the United States stands at about 83%.
Conversely, as highlighted by Agrawal et al. (2019), in a developing country like India — where
the urbanisation rate stands at only about 35% —, the average electricity demand of rural house-

13Housing quality is available only for African countries, Brazil, China, Indonesia, Mexico, and Pakistan.
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holds is half of the national average residential consumption. Overall, these numbers suggest
that economic development levels are determining an inverse-U shaped relationship between
urbanisation and household electricity consumption, thus explaining the large range observed
in the average marginal effects of the urban driver in Figure 5. The effect of education also ex-
hibits a great dispersion across regions. In non-OECD countries, education levels are positively
related to households’ electricity consumption, while in OECD countries they have a negative
impact. This might be explained by the fact that education is related to greater energy conser-
vation awareness in OECD countries (Liu et al., 2022), while its correlation with income might
be more prominent in developing countries. Regarding CDDs, the strong positive impact on
air-conditioning electricity consumption in higher-income countries might be a signal of greater
household expenditure capacity at the intensive margin of electricity consumption.

Figure 5: Boxplot of the marginal effects of the drivers of household electricity consumption.
Estimates are based on country-specific average marginal effects calculated from standardised
regression coefficient. Note: only coefficients with p < 0.05 are included.

5.4 Implications for household budget

When the electricity needs for cooling are translated into electricity expenditure, the utilisa-
tion of air-conditioning would set a higher burden on poorer households. Consider an Indone-
sian family, who on average allocates 2% of its total expenditure to electricity, and an American
household, who on average allocates 4% of the budget to electricity. A more than 66% increase
in electricity consumption for a Indonesian family is certainly more difficult to afford compared
to the 30% increase for an American one.

To understand the budget implications for families of adopting air-conditioning, we use the
expenditure share allocated to air-conditioning electricity as a pecuniary measure of cooling
poverty. To do so, we first compute the amount of electricity quantity used for air-conditioning
using the coefficients of air-conditioning from our main specification (Column 4 in Table 3), and,
second, we multiply this quantity by electricity prices.

17



Figure 6 shows that, in emerging economies, such as Pakistan, Brazil, China, and India, poorer
households — who adopted the cooling technology — allocate for air-conditioning alone about
5% or more of their total budget. In Pakistan, the median poorest household even spends almost
10% of their budget on space cooling electricity. The budget share spent on total electricity and
air-conditioning electricity is inversely related to a household’s average income. This holds in
all countries and regions analysed, albeit with more stark differences in some than others. In the
United States, China, Brazil, India, Pakistan, the expenditure share spent by poorer households
is more than twice the expenditure share spent by wealthier families on air-conditioning elec-
tricity. Such differences can be attributed to several factors, including but not limited to public
subsidies on electricity prices, correlations in space between heat exposure and wealth distribu-
tion among households, technology efficiency, behaviours, and cultural norms.

Additionally, Figure B2 shows the fraction of a household’s budget allocated to final residential
electricity stratified by air-conditioning ownership, and the air-conditioning electricity share.
Air-conditioning electricity accounts for a large share of total electricity expenditure. Families
with air-conditioning tend to spend much more on electricity. In low-income households in de-
veloping countries, the median household with an air conditioner spends twice as much as any
median household. In some countries and regions with currently low air-conditioning penetra-
tion levels — e.g. Africa, Brazil, Indonesia, India, Mexico, Pakistan —, air-conditioning elec-
tricity consumption by itself accounts for similar budget shares to the median total household
electricity consumption. Conversely, in countries with already high relative air-conditioning
penetration rates (such as Argentina, China, Italy, OECD regions, and the US), a significant dif-
ference is observed between the median values of air-conditioning electricity shares and total
electricity shares. Importantly, in all countries the difference in the share of electricity expendi-
ture between adopters and non-adopters of air-conditioning diminishes.
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Figure 6: Distribution of estimated household electricity consumption for air-conditioning, strat-
ified by quintile of total household electricity consumption in 2020. Note: only households own-
ing air conditioning are included.

5.5 Robustness checks

We perform some robustness checks to further corroborate the baseline results of our analysis.
In Columns 1-4, Table 4, we use more stringent fixed effects, replacing country dummies, with
fixed-effects at, first, the most-disaggregated subnational level available for each country, and,
second, at ADM-1 level. We find that our results remain consistent. Notice that with these spec-
ifications we lose few observations, as the logit distribution drops observations that perfectly
predict 0 or 1 outcome. For this reason, we opt for using country fixed effects as the main speci-
fication.

Defining a threshold for CDD and HDD is usually arbitrary. We then re-estimate our discrete-
continuous regressions, constructing these variables with alternative thresholds, particularly 24
and 15 ◦C for CDD and HDD respectively (Columns 5-6). We find similar effects to our main
specification. However, once we interact the air-conditioning with CDD, the ”alone” effect of
CDD remains significant. This is likely due to the fact that CDD and HDD do not have a com-
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mon threshold (18 ◦C) anymore, and so there is an omitted category, that is the degree-days
between 15 and 24, which correlates with the dummy of air-conditioning. Indeed, we find a
strong correlation (-0.3) between air-conditioning ownership and this omitted category.

Because electricity prices are likely to be endogenous, we test whether their inclusion might
have any influence on our results. First, in Columns 7-8 we drop electricity prices from both
the first and second stage. Second, in Columns 7-8 we include an interaction between electricity
prices and income deciles to test whether there is any heterogeneous effects of prices affecting
our results. In all cases our estimates are very similar to the main specification.

Wooldridge (2015) suggests that in a control function approach the correction term can be mod-
elled as any other variable. In another set of estimates (Columns 11-16) we then test the robust-
ness to changes in the functional form of the correction term. First, we include a squared term of
θ. Second, we control for interactions of the correction term with contemporaneous CDD. The
results remain consistent.

In Columns 17-18 we also estimate our demand equation using electricity consumption in level.
The results show the same functional form for air-conditioning utilisation of our main specifica-
tion.

We finally re-estimate our main specification without survey weights (Columns 19-20). The
estimates remain robust, but tend to overestimate air-conditioning’s contribution.
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Table 4: Robustness Checks

Sub-national FE ADM1-FE CDD 24 - HDD 15 No Electricity Price Price Interactions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AC 0.308∗∗∗ 0.013 0.362∗∗∗ 0.019 0.343∗∗∗ 0.089∗∗ 0.340∗∗∗ −0.126∗∗ 0.333∗∗∗ −0.081
(0.081) (0.041) (0.032) (0.062) (0.035) (0.039) (0.037) (0.061) (0.034) (0.055)

AC × CDD 0.036∗∗∗ 0.039∗∗∗ 0.110∗∗∗ 0.053∗∗∗ 0.046∗∗∗

(0.007) (0.010) (0.016) (0.009) (0.008)
AC × CDD2 −0.001∗∗∗ −0.001∗∗ −0.005∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.000) (0.000) (0.001) (0.000) (0.000)

Controls YES YES YES YES YES YES YES YES YES YES
Correction Term YES YES YES YES YES YES YES YES YES YES
Country FE NO NO NO NO YES YES YES YES YES YES
Sub-national FE YES YES NO NO NO NO NO NO NO NO
ADM-1 FE NO NO YES YES NO NO NO NO NO NO

R2 0.730 0.757 0.725 0.727 0.722 0.725 0.713 0.717 0.725 0.729
Countries 25 25 25 25 25 25 25 25 25 25
Observations 620463 620463 663199 663199 673215 673215 673215 673215 673215 673215

Squared Correction Interaction Squared Interaction Electricity in Level Unweighted

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

AC 0.326∗∗∗ −0.162∗∗∗ 0.322∗∗∗ −0.120∗∗ 0.322∗∗∗ −0.120∗∗ 1117.433∗∗∗ −868.276∗ 0.434∗∗∗ −0.192∗

(0.040) (0.060) (0.039) (0.058) (0.039) (0.058) (99.134) (475.819) (0.038) (0.098)
AC × CDD 0.056∗∗∗ 0.052∗∗∗ 0.052∗∗∗ 236.509∗∗∗ 0.058∗∗∗

(0.009) (0.009) (0.009) (62.168) (0.012)
AC × CDD2 −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −4.392∗∗∗ −0.001∗∗∗

(0.000) (0.000) (0.000) (1.508) (0.000)

Correction Term YES YES YES YES YES YES YES YES YES YES
Country FE YES YES YES YES YES YES YES YES YES YES
Correction Term2 YES YES NO NO NO NO NO NO NO NO
Correction Term × CDD NO NO YES YES YES YES NO NO NO NO
Correction Term × f(CDD) NO NO NO NO YES YES NO NO NO NO

R2 0.723 0.727 0.723 0.725 0.723 0.725 0.473 0.480 0.679 0.684
Observations 673215 673215 673215 673215 673215 673215 673215 673215 673215 673215
Countries 25 25 25 25 25 25 25 25 25 25

Notes: (1)-(20) std. errors clustered at the first sub-national (ADM1) level in parentheses in parentheses. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
Regressions (1)-(20) are conducted using survey weights. ”Controls” include natural logarithm of electricity price, and weather and socio-
economic and demographic variables. ”Sub-national” means the most disaggregated geographical information available for each country.
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6 Projections

We project future air-conditioning prevalence and residential space cooling electricity around
2050 by updating both the first and second stage of the empirical regressions with future val-
ues of climate (CDDs and HDDs), total expenditure, urbanisation, as well as the other socio-
demographic characteristics, including education, age, and housing, when available. This is an
important advancement compared to previous contributions, which generally only consider cli-
mate change and economic conditions (income). The joint estimation of the intensive and the
extensive margin makes it possible to develop projections of future electricity for space cooling
that account for the increased diffusion of air-conditioner as well as for the increased intensity
in utilisation.

6.1 Method and data for projections

To project future air-conditioning adoption and electricity consumption, we collect projections
data from various sources and for different scenarios. Table B4 summarises the evolution of the
main drivers used in the projections of both extensive and intensive margin in 2020 and 2050
under two scenarios, the scenarios SSP245, a combination of SSP2 (Fricko et al., 2017) and RCP
4.5 implying an intermediate level of greenhouse gases and therefore of radiative forcing (4.5
W/m2) and the scenario SSP585, a combination of SSP5 (Kriegler et al., 2017) and RCP 8.5 im-
plying a high level of greenhouse gases and of radiative forcing (8.5 W/m2).

Climate change projections are obtained from the NASA Earth Exchange Global Daily Down-
scaled Projections (NEX-GDDP-CMIP6) data set (Rama Nemani / NASA, 2021) based on Scenar-
ioMIP bias-corrected model runs. The native time resolution is daily and the spatial resolution
is of 0.25 arc-degrees. We process both historical data from each model14 to calculate pixel-wise
median CDD and HDD values for the 1995-2014 historical period, and future projections for the
2041-2060 period along two scenarios, which, consistently with the CMIP6 logic, are based on
SSP-RCP combinations (O’Neill et al., 2016).

Then, to project CDDs and HDDs for each scenario s and administrative unit i, we first calculate
the difference between the CDDs/HDDs in year t in the historical average value for the his-
torical CMIP6 period (1995-2014), i.e., for the example of CDDs, ∆ist = CDDcmip6

ist − CDD
cmip6
ist .

Such difference is then added to the historical CDDs from GLDAS/ERA5 for each administra-
tive unit i, yielding the projected CDDs/HDDs for each scenario s at each year t: CDDist =
CDDist + ∆ist. This procedure allows a cross-calibration between CDD/HDD data calculated
from GLDAS/ERA5 and from CMIP6 climate models.

Projections of socio-economic and demographic characteristics build on gridded and national-
scale projections. Yearly per capita GDP growth rates are computed from the gridded GDP
projections for the SSPs of interest (Murakami et al., 2021). To achieve this, we extract GDP and
population at the lowest administrative level that is provided with each country’s survey, and
then calculate administrative unit-level GDP per capita growth rates for each scenario and each
future year between 2020 and 2050. Households located within a given administrative unit are
then assumed to experience a growth in their total expenditure level equal to the average growth
rate computed for that unit. In addition, SSPs-consistent gridded population growth rates (Jones
and O’Neill, 2016) are used to project the growth in the number of households for each adminis-
trative unit in each country, and, similarly, SSP-consistent gridded urbanisation projections are
used to update the urbanisation shares (Gao and Pesaresi, 2021).

14The dataset includes 32 models, from which ’hot models’ (Hausfather et al., 2022) are filtered out.
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Changes in household age, gender, and education levels across SSP scenarios are computed from
country-wide stratified population projections (Samir and Lutz, 2017), though projecting these
additional drivers poses some challenges, particularly in relation to binary and factor variables.
While the age and gender share projections can directly be parsed to the corresponding survey
variables, in the case of education levels, we assume shifts in the category of education of each
household to match the growth rate in the education level-stratified population counts. In the
case of housing, the historical improvements in the housing index are extrapolated into the fu-
ture for countries where the variable is available.

Household survey weights, which ensure the national representativeness of the survey by at-
tributing a specific relative importance to each surveyed household, are also updated for the
future years, t, and scenarios, s. The survey weights of each household i (Wi,hist) is modified
with the rate of change in population (POPGRd,t,s) within the spatially finest administrative
unit in which each surveyed household is located, d:

Wi(d),t,s = Wi,hist × (1 + POPGRd,t,s)

This approach has the important drawback of not considering that the joint distribution of
households’ socio-economic characteristics will change. That is, a household will not change
the type of households it will represent in the future, but it will only represent more/less house-
holds in the future.

Household-level projections uses the discrete-continuous global pool model specification (Col-
umn 4 in Table 3) to project the future prevalence of air-conditioning and future electricity con-
sumption, including air-conditioning electricity. Future air-conditioning prevalence rates are
predicted from the first stage logit regression after updating the values of CDDs, HDDs, total ex-
penditure, age, education, urbanisation, and housing when available. The fitted equation from
the first-stage logit model yields the future adoption probability for each household. A house-
hold is assumed to have air-conditioning in the future if the predicted probability exceeds the
cutoff of 0.5. We then predict total households’ electricity from the second stage regression after
updating the values of CDDs, HDDs, total expenditure, age, education, urbanisation, housing
when available for both sets of households with and without air-conditioning, where the num-
ber of households with air-conditioning is updated using the first stage logit regression results.
Country-level, residential air-conditioning prevalence and electricity consumption is obtained
by aggregating individual households with the adjusted survey weights.

6.2 Future projections of household air-conditioning electricity

The penetration of air-conditioning will increase significantly over the next thirty years. From
the 2020 average of 26% in our pool of countries, it will reach 40-53% in 2050 under moder-
ate and intense warming (Table 5). Country-specific results align with previous estimates (Pa-
vanello et al., 2021; Davis et al., 2021). A significant use of air conditioners is expected in most
high-income countries with warm regions such as Italy, United States and OECD-NonEU (Aus-
tralia, Canada and Japan). Middle and lower-income countries that are expected to experience a
faster growth in income will exhibit the largest relative increases in air-conditioning prevalence
(e.g. China, India, Indonesia). Disparities remain, with particularly African countries (8-15%)
and Pakistan (24-34%) not reaching a sufficient level of penetration to satisfy most households.
Countries with colder climates (e.g. Sweden) or characterised by highly heterogeneous climate
(Mexico) display more moderate growth rates of air-conditioning spread.

Air-conditioning diffusion explains only part of the future dynamics of electricity demand. Our
empirical model shows that the intensity of air-conditioning usage is proportional to the expo-
sure of households to CDDs, as well as to income availability and an array of additional socio-
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demographic factors. Moreover, the total cooling needs of a country are related to the size of
its population. Consider, for example Italy and India. Projected air-conditioning penetration in
2020 in Italy is nearly the double of the prevalence rate projected in India. Yet, the estimated per
capita electricity use for space cooling is much larger in India than in Italy, and so is the overall
national demand. In 2020, residential electricity for space cooling in India is comparable to the
total residential electricity in Italy (about 70 TWh).

As a result of a changing climate and economic and socio-demographic transformations, we
project air-conditioning electricity use to increase, particularly in developing countries. For in-
stance, in Indonesia the yearly electricity consumption driven by air conditioners would move
from 12 TWh to 45-81 TWh. In India, per capita electricity demand for cooling would more than
quadruplicate in the SSP2-RCP4.5 scenario, a figure consistent with previous projected trends
Abhyankar et al. (2017). Overall, while not directly comparable due to the different geographi-
cal coverage, our pool projections of electricity use point at the same direction of the recent IEA’s
The Future of Cooling report (IEA, 2018).15

Finally, it is worth remarking that our projected change in the air-conditioning electricity ex-
penditure reflects various underlining trends that influence both the extensive and the intensive
margin. The literature has traditionally focused on drivers that are relatively easier to project,
namely temperature and income variables, but Figure 5 shows that other socio-demographic
drivers are equally important factors influencing both margins of adaptation. Figure B3 shows
that projections based only on climate change and expenditure change in the future yield system-
atically lower air-conditioning penetration rates and utilisation levels of electricity consumption.
Such pattern is observed both in the global pooled model (Panels A and B) as well as in the in-
dividual regions (Panels C and D). Furthermore, Figure B4 decomposes the role of the various
factors influencing household electricity consumption in both the historical and future period.
This plot suggests that on top of income and climate-related determinants, socio-demographic
drivers and their transformations (e.g., age, gender, education) will play a major role in shaping
future electricity demand in emerging economies.

15In the baseline scenario IEA estimates a threefold growth of global energy use for cooling in the residential sector
by 2050.
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Table 5: Projections of Residential Air-conditioning Adoption and Use

AC penetration rate (%) AC electricity (kWh/hh) Total AC electricity (TWh)

2020 SSP2-4.5 (2050) SSP5-8.5 (2050) 2020 SSP2-4.5 (2050) SSP5-8.5 (2050) 2020 SSP2-4.5 (2050) SSP5-8.5 (2050)

Country Mean Mean Mean Mean Mean Mean Mean Mean Mean

Pool 25.90 40.30 52.70 1979.30 2100.40 2293.80 532.10 1007.70 1381.50

Africa 3.50 7.60 15.00 344.00 378.40 379.20 0.80 3.20 5.40
Argentina 68.10 85.30 90.60 349.60 497.10 591.90 3.00 6.20 7.00
Brazil 34.60 54.50 71.90 1700.30 1760.50 1973.20 37.50 67.60 91.70
China 57.70 82.00 89.80 958.70 1370.80 1784.30 196.30 366.30 505.50
India 16.10 48.50 65.10 1382.90 1614.10 1839.90 72.50 322.90 439.50
Indonesia 15.70 46.30 72.90 1408.40 1657.20 1997.20 11.90 45.80 81.30
Italy 69.50 86.50 91.40 285.70 502.80 651.20 4.30 9.30 14.70
Mexico 28.10 45.40 57.80 630.70 785.70 803.10 5.80 13.80 15.20
OECD-EU 35.90 50.30 57.50 883.30 1161.50 1159.20 14.60 29.80 39.70
OECD-NonEU 94.20 97.80 98.70 985.60 1367.20 1831.20 52.40 76.70 122.00
Pakistan 14.90 24.30 33.50 1708.20 1847.20 1908.70 8.10 20.40 24.20
United States 94.90 97.80 98.60 2514.50 3230.10 3592.30 294.20 461.00 611.40
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7 Discussion

7.1 Implications for household electricity expenditure

Projecting future changes in the budget shares allocate to air-conditioning electricity requires
assumptions about the evolution of the entire income distribution, which we avoid. Contrary,
Figure 7 shows the change in the distribution of households’ air-conditioning electricity expen-
diture (in $2011 PPP) by country between 2020 and 2050, while keeping prices constant.16 The
dashed vertical lines in each panel summarise the variations in the mean air-conditioning elec-
tricity expenditures across years by country and scenario. This is possible thanks to the large
across and within-country heterogeneity of our global household pooled database and the rela-
tive household-level future projections.

The flattening of the density peaks when shifting from 2020 (in red) to 2050 (in blue) suggests
that air-conditioning becomes available to a larger number of people, including lower income
households, which, therefore, contribute to counterbalancing the rightward shift in the mean air-
conditioning electricity consumption. For example, in Pakistan and in Africa, households with
spending levels below the country-level mean gain access to air-conditioning, only marginally
increasing the national average irrespective of a strong growth in the absolute number of house-
holds using air-conditioning. Other countries are characterized by a more pronounced right-
ward shift, pointing at more households being located on high-expenditure levels and leading
to a growth in the mean air-conditioning expenditure levels.

16Households that are not projected to have air conditioning in the future are excluded from the analysis
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Figure 7: Distribution of households’ expenditure for air-conditioning electricity driven by air-
conditioning (2011 USD PPP), by country/region and scenario.

7.2 Implications for electricity supply systems

Our estimates reveal that in the 25 countries considered in the analysis, air-conditioning elec-
tricity consumption will grow two to nearly three fold by 2050, reaching about 1,000-1,400 TWh.
To put this number into perspective, the figure is in the range of the current total final electricity
consumption of India in 2020. It is therefore clear that — as also highlighted in previous studies
(Colelli et al., 2022, 2023; Davis and Gertler, 2015) — this surge in energy use for adaptation will
have very large implications for power systems planning (Sherman et al., 2022), their stability
(Auffhammer et al., 2017), and the magnitude of the challenge for achieving global decarbonisa-
tion goals (Colelli et al., 2022).

To understand the implications of the surge in cooling demand for electricity supply, we provide
a simple engineering back-to-the-envelope calculation for India, for which we estimate the total
yearly electricity consumption for air-conditioning to grow from 70 TWh to 325-440 TWh in 2050.
We assume (i) homogeneous utilisation of air-conditioning throughout months of the year,17 (ii)

17This is a conservative assumption.
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an average run time of about six hours (Ramapragada et al., 2022), and (iii) a homogeneous dis-
tribution of use in this period and in each hour of the day. We so estimate that an increase in the
range of 150-200 GW in peak generation capacity - or, combined generation and storage capac-
ity - would be implied as necessary to satisfy the increased hourly peak electricity demand from
air-conditioning.18 Interestingly, if we instead assume a distribution of use with higher intensity
in certain periods of the year (Colelli et al., 2023) — in India half of air-conditioning electricity
consumption is concentrated in the summer season (Ramapragada et al., 2022) —, and that in
these months air conditioners would be used an average of 12 hours per day, we obtain peak
generation capacity increases in the same range19. These are very significant findings, consid-
ering that the current installed capacity of India stands at about 420 GW in year 2023, and they
have important repercussions for planning a power system with both sufficient capacity, stabil-
ity, and flexibility to accommodate such surge in peak demand.

To mitigate these impacts, policies and investments into more efficient cooling appliances are
also crucial (IEA, 2018; Ramapragada et al., 2022). The adoption of energy-efficient cooling ap-
pliances has indeed been the focus of international agreements, such as the Kigali Cooling Effi-
ciency Program (K-CEP) and the Clean Cooling Collaborative, which aim at channelling funds
to provide universal access to efficient cooling.

7.3 Implications for emissions and climate policy

The surge in energy use for air-conditioning will imply further challenges for decarbonisation
goals as a consequence of energy-related CO2 emissions. According to our estimates (Table B5),
the estimated growth in air-conditioning electricity consumption in the 25 countries considered
in the analysis may imply a growth in CO2 emissions by between 692 and 948 MtCO2 — starting
from the current estimate of 365 MtCO2 —, a figure corresponding to more than the total national
CO2 emissions of France. Most of these emissions would come from developing countries like
China, India, and Indonesia, where the adoption of air-conditioning would indeed skyrocket.

To understand the social cost of such potential growth in CO2 emissions as a consequence of
increased cooling use, we take as a reference the central value of the social cost of carbon of 185
$/tCO2 from Rennert et al. (2022). We so estimate that this would translate into a ”Social Cost of
Cooling” of 128-175 billion USD. in 2050.

As a consequence, to mitigate the global impacts of cooling, in parallel of efficiency gains, a rapid
decarbonisation of the global power sector is crucial, in particular in countries with a current or
projected high intensity of air-conditioning usage and a high carbon intensity of the national
electricity system. Relevant examples include China, India, and Indonesia (highly reliant on
coal), but also high-income countries such as the USA.

It should be noted that if one follows the findings of Rode et al. (2021), such surge in global
cooling energy use — and so CO2 emissions and thus social cost — would be counterbalanced by
decreases in global heating energy use. Yet, the high spatial and social unbalance in the source of
emissions causing impacts and the ultimate impacts of emissions (Gazzotti et al., 2021), provides
a reason to believe that adverse impacts might still strongly hamper the most vulnerable social
groups in highly exposed regions.

18Calculation example: 325 TWh / 12 (homogeneous AC use across months of the year) / 30 (days in a month) / 6
(average AC utilisation hours per day) = 150 GW

19Calculation example: 325 TWh / 2 (half of yearly consumption concentrated in three peak demand months) / 90
(days in three months) / 12 (average AC utilisation hours per day) = 150 GW
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8 Conclusion

This paper presents the first global assessment of current patterns of both intensive and ex-
tensive margin of adaptation through household air-conditioning uptake and utilisation. To
estimate the long-term effects of temperature on electricity consumption we use a discrete-
continuous choice econometric framework applied to a newly constructed household-level, multi-
country micro data set. We also project potential implications of future cooling uptake and elec-
tricity consumption to around 2050 under an array of last generation socio-economic and climate
change scenarios, considering a broad array of grid-cell level and country-level drivers projec-
tions at the household level.

Compared to previous assessments, our household-level analysis allows disentangling the dif-
ferent sources of heterogeneity determining a large range of variability on the impact of air-
conditioning ownership on household electricity consumption, such as at changing heat expo-
sure and affluence levels, but also through the mediating role of drivers such as education, age,
and urbanisation. In turn, this analysis provides important hints on the importance of behav-
iors, practices, and technologies.

Overall, we find that on average, air conditioning ownership increases households’ electric-
ity consumption by 34%. The interplay between growing air-conditioning adoption, climate
change, disposable income, and socio-demographic drivers will induce global households’ elec-
tricity consumption to soar. When contextualising the impact of space cooling with respect to
other socio-economic, demographic, and climatic drivers, air-conditioning stands out as a lead-
ing determinant of electricity demand (when available).

These findings have important implications as they shed light on the interaction between mi-
cro and household-level factors and global trends in shaping current and future implications of
adaptation on households’ expenditure and welfare, environmental pollution and greenhouse
gas emissions, and point at unforeseen challenges that need to be seriously addressed by policy.
In addition, they reveal the current and future patterns of climate adaptation inequalities in dif-
ferent world regions and social groups.

Moreover, we demonstrate that air-conditioning penetration and related electricity consump-
tion will soar as a result of a changing climate, socio-economic growth and transformation, and
global demographic growth. This will have important implications for both infrastructure plan-
ning and environmental policy, but also for energy poverty and equity, as less affluent house-
holds will face an increasing economic burden for thermal comfort adaptation.

To conclude, it is worth highlighting some limitations of our work that should be further ex-
plored in future research. First, Dubin and McFadden (1984)’s methodology mainly relies on the
assumption that error term in the underlying random utility model are distributed as a general-
ized extreme value (GEV) distribution. Since the selection term is constructed from the predicted
probabilities, the more the first-stage model is accurate, the better it also performs in the second
stage. Second, our results come from cross-sectional estimates. Even though we correct for
air-conditioning’s endogeneity, some bias may still be present. However, whereas micro-panel
data would be the ideal setting, household expenditure and energy surveys are currently mostly
cross-section. This highly limits the data that can be used for multi-country micro analysis. Last
but not least, our data lacks information about energy efficiency, and so technological level of
air conditioners. Thus, our projections assume that technologies would remain the same for
the next thirty years. This is a strong assumption as we may expect there will be technological
improvements in the future. Future works should aim at identifying the role of innovation in
future patterns of air-conditioning uptake and utilisation.
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A Data description

Our data set consider three categories of drivers of electricity consumption:

1. Air-conditioning ownership (AC): it is a binary variables expressing whether at the in-
terview date of the survey a household owns at least an air-conditioning unit, either a
window/room or a centralised air-conditioning system.

2. Climate and income are the core determinants of air-conditioning uptake and utilisation
that have been used traditionally by the literature. We measure them using households’
total expenditure as a proxy for income conditions, and the Cooling and Heating Degree
Days experienced in the administrative area where the household resides.

3. Socio-demographic drivers: they include households’ characteristics such as education,
age, and gender of the household head, home ownership, housing quality (when avail-
able), household size, urbanisation level in the administrative area where the household
resides.

The remainder of this section describes in more detail the micro data variables considered in our
dataset.

• Total expenditure (in natural logarithm): household total expenditure (or household in-
come, depending on the country-specific questionnaire) refers to the sum of all expendi-
tures (durable goods, services, etc.) faced by the household in the survey year. It is the key
variable identifying the economic status of the household. The unit is harmonised to 2011
PPP USD: first, to convert from local currency unit to USD we multiply total expenditure
by the survey year-specific World Bank’s PPP conversion factor for private consumption
(LCU per international USD) (World Bank indicator PA.NUS.PRVT.PP)20; second, to obtain
the variable in 2011 USD PPP we adjust the variable for inflation by using the US Bureau
of Labor Statistics CPI inflation calculator21.

• Electricity consumption (in natural logarithm): household electricity consumption is - de-
pending on the country-specific questionnaire - either directly available or inferred through
information on electricity expenditure. In the latter case, electricity expenditure informa-
tion is divided by either national or sub-national or household-specific residential retail
prices data matching the survey year of each country.

• Urbanisation: since in declared urban status of the household was not available for all
countries, we extract gridded population-weighted urbanisation rates data from Gao and
Pesaresi (2021) for the smallest administrative unit available at each survey country and
parse it to households. This way, we generate an additional continuous variable for urban-
isation expressing the share of population-weighted area within the administrative unit of
belonging to the household that is classified as urban.

• Age and gender of household head: each surveyed household in each country identifies
a unique member of the household who is classified as the household head. Information
on the age and gender of the person in charge are processed and included in the database
as a continuous and categorical variable, respectively.

• Education level category of household head: depending on the country-specific ques-
tionnaire, education levels are generally reported in a set of different categories, or as the
number of years of education received. To harmonise the variable, a standard categorisa-
tion of education levels is proposed considering the four following levels: (i) No/lower

20https://data.worldbank.org/indicator/PA.NUS.PRVT.PP
21https://data.bls.gov/cgi-bin/cpicalc.pl
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than primary education; (ii) primary education; (iii) secondary education; (iv) tertiary or
superior education level. The categorisation is then applied to all countries, resulting in a
harmonised categorical variable.

• Household size: numerical variable describing the number of people living inside the
household.

• Home ownership status: a categorical variable describing whether the household is own-
ing or renting (or other forms of arrangement) the home where it lives.

• Housing quality index: the housing quality index is a three-category variable introduced
for low and lower-middle income countries only. Albeit heterogeneous across countries,
it seeks to capture different characteristics of the dwelling based on country-specific ques-
tionnaire information on walls and roof materials and quality; water supply infrastructure;
and type of toilet service available. A value of 1 describes a household with building ma-
terials such as dung and mud and lack of toilet inside the household; a value of 2 identifies
a dwelling built with more solid and insulating materials; while a value of 3 describes a
home built with bricks and having piped water and a toilet facility. The housing quality
index variable thus serves as a proxy of the type of household and is additional to other
socio-economic variable. As it is not available for all countries, we include these variable
only in country-specific regression.

• Electricity prices: we gather residential electricity prices information from different sources,
and at different scales (national, sub-national, household-level). As for total expenditure,
electricity prices are also converted in 2011 USD PPP.
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B Additional results

Table B1: The Effect of Air-conditioning on Residential Electricity Consumption

OLS OLS DMF DMF
(1) (2) (3) (4)

AC 0.601∗∗∗ 0.363∗∗∗ 0.336∗∗∗ −0.122∗∗

(0.033) (0.031) (0.037) (0.058)
AC × CDD 0.052∗∗∗

(0.008)
AC × CDD2 −0.001∗∗∗

(0.000)
CDD 0.025∗∗ 0.024∗∗ 0.017

(0.010) (0.011) (0.011)
CDD2 −0.000∗ −0.000∗ −0.000

(0.000) (0.000) (0.000)
HDD 0.001 0.000 0.006

(0.008) (0.008) (0.007)
HDD2 −0.000 −0.000 −0.000

(0.000) (0.000) (0.000)
Log(Exp) 0.372∗∗∗ 0.371∗∗∗ 0.368∗∗∗

(0.031) (0.031) (0.031)
Log(P) −0.388∗∗∗ −0.391∗∗∗ −0.392∗∗∗

(0.084) (0.085) (0.085)
Urbanisation (%) −0.182 −0.177 −0.134

(0.152) (0.149) (0.140)
House Ownership (Yes = 1) 0.033∗∗ 0.034∗∗ 0.038∗∗∗

(0.014) (0.015) (0.014)
Household Size 0.024∗ 0.024∗ 0.025∗

(0.013) (0.013) (0.013)
Primary Edu. 0.111∗∗∗ 0.106∗∗∗ 0.098∗∗∗

(0.015) (0.015) (0.014)
Secondary Edu. 0.153∗∗∗ 0.147∗∗∗ 0.134∗∗∗

(0.020) (0.020) (0.020)
Post Edu. 0.155∗∗∗ 0.147∗∗∗ 0.117∗∗∗

(0.028) (0.028) (0.027)
Age (Head) 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.001) (0.001) (0.001)
Female (Yes = 1) 0.015∗ 0.015∗ 0.016∗

(0.009) (0.009) (0.008)
ζ̂ −0.036∗∗ −0.022∗

(0.014) (0.012)

Country FE YES YES YES YES

R2 0.651 0.721 0.721 0.725
Countries 25 25 25 25
Observations 673215 673215 673215 673215

Notes: (1), (2), (3) and (4) clustered standard errors at the ADM-1 level in paren-
theses in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01. Regressions are con-
ducted using survey weights. For DMF Columns the first stage is shown in Table
B2 Columns 3-4.
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Table B2: Logit Regression for Air-conditioning Ownership

LPM
Logit

Coefficients M. Effects
(1) (2) (3) (4)

CDD 0.096∗∗ 0.033 0.596∗ 0.057∗

(0.039) (0.040) (0.334) (0.032)

CDD2 −0.002∗∗ −0.000 −0.021∗∗ −0.002∗∗

(0.001) (0.001) (0.009) (0.001)
CDD × Log(Exp) 0.008∗∗∗ 0.038 0.004

(0.003) (0.024) (0.001)

CDD2 × Log(Exp) −0.000∗∗ 0.001 0.000
(0.000) (0.001) (0.000)

CDD −0.058∗ −0.067∗ −0.461∗ −0.044∗

(0.035) (0.035) (0.251) (0.024)
CDD2 0.001 0.001 0.002 0.000

(0.001) (0.001) (0.005) (0.001)
CDD × Log(P) −0.005 −0.005 0.034 −0.003

(0.006) (0.006) (0.059) (0.006)

CDD2 × Log(P) 0.000 0.000 −0.002 −0.000
(0.000) (0.000) (0.002) (0.000)

Log(Exp) 0.090∗∗∗ 0.032∗∗ 0.225∗ 0.022∗

(0.007) (0.016) (0.132) (0.013)
Log(P) 0.062 0.056 −0.040 −0.004

(0.057) (0.056) (0.431) (0.041)
Log(P) × Household Size 0.000 0.000 −0.049 −0.005

(0.004) (0.004) (0.045) (0.004)
Log(P) × House Ownership 0.039∗∗∗ 0.036∗∗∗ 0.152 0.015

(0.014) (0.014) (0.117) (0.011)
Urbanisation (%) 0.328∗∗∗ 0.341∗∗∗ 2.902∗∗∗ 0.280∗∗∗

(0.100) (0.099) (0.640) (0.060)
House Ownership (Yes = 1) 0.105∗∗∗ 0.101∗∗∗ 0.663∗∗∗ 0.059∗∗∗

(0.020) (0.019) (0.177) (0.015)
Household Size −0.004 −0.004 −0.146∗∗ −0.014∗∗

(0.005) (0.005) (0.065) (0.006)
Primary Edu. 0.048∗∗∗ 0.045∗∗∗ 0.670∗∗∗ 0.058∗∗∗

(0.009) (0.009) (0.064) (0.006)
Secondary Edu. 0.118∗∗∗ 0.114∗∗∗ 1.156∗∗∗ 0.110∗∗∗

(0.014) (0.014) (0.088) (0.008)
Post Edu. 0.196∗∗∗ 0.193∗∗∗ 1.795∗∗∗ 0.180∗∗∗

(0.016) (0.016) (0.107) (0.012)
Age (Head) 0.000∗∗ 0.000∗∗ 0.007∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.001) (0.00)
Female (Yes = 1) −0.005 −0.004 −0.134∗∗∗ −0.013∗∗∗

(0.004) (0.004) (0.036) (0.004)

Country FE YES YES YES YES

Countries 25 25 25 25
Observations 673215 673215 673215 673215

Notes: Dependent variable is air-conditioning (0,1). Clustered standard errors at
the ADM-1 level in parentheses. Column (4) shows the average marginal effects
(AMEs) from the logit regression. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Regressions are
conducted using survey weights.
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Table B3: The Effect of Air-conditioning on Electricity Quantity — Income Quintile

1st Quintile 2nd Quintile 3rd Quintile 4th Quintile 5th Quintile
(1) (2) (3) (4) (5)

AC −0.017 −0.010 0.094 −0.027 −0.028
(0.069) (0.076) (0.072) (0.081) (0.069)

AC × CDD 0.069∗∗∗ 0.051∗∗∗ 0.024∗∗ 0.043∗∗∗ 0.049∗∗∗

(0.011) (0.011) (0.010) (0.011) (0.009)
AC × CDD2 −0.002∗∗∗ −0.001∗∗∗ −0.000 −0.001∗∗∗ −0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Controls YES YES YES YES YES
Correction Term YES YES YES YES YES
Country FE YES YES YES YES YES

R2 0.714 0.738 0.747 0.728 0.677
Countries 21 25 23 25 25
Observations 131411 135075 133874 134717 134000

Notes: Clustered standard errors at the ADM1 level in parentheses. Regressions are conducted
using survey weights. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. ”Controls” include natural logarithm of
electricity price, and weather and socio-economic and demographic variables.

Figure B1: Boxplot of the marginal effects of the drivers of household electricity consumption,
divided into OECD and non-OECD countries. Estimates are based on country-specific average
marginal effects calculated from standardised regression coefficients. Note: only coefficients
with p < 0.05 are included.
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Figure B2: Distribution of estimated household (air-conditioning) electricity consumption, strat-
ified by quintile of total household electricity consumption in 2020.
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Figure B3: Comparison of future (A,C) air-conditioning penetration and (B,D) total electricity
consumption for cooling (TWh) when projecting all drivers (bold line) or only climate and in-
come (dashed line). Note: projections are based on the global households pool model.
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Figure B4: Decomposition analysis of average (per household) historical and future electric-
ity demand. Facets group countries and regions. Each facet shows to socio-economic/climate
change scenario combination (SSPs). Colours describe the determinants of current (up to
100%) and future projected (above 100%) electricity consumption, inclusive of changes in air-
conditioning intensive and extensive margins. The total value on the y-axis represents consump-
tion growth in year 2050 compared to baseline. Note: projections are based on country/region-
specific models.
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Table B4: Evolution of AC adoption and utilisation drivers (population-weighted mean value)
used for household-level projections, by country/region.

CDD HDD Expenditure Age Edu Housing index Urban

Country Scenario Mean Mean Mean Mean Mean Mean Mean

Africa Current 781.58 5.10 975.49 46.72 0.68 1.53 0.05
SSP2, 2050 1044.41 1.93 3530.40 47.64 1.72 2.34 0.03
SSP5, 2050 1192.91 1.45 7112.50 47.58 1.72 2.34 0.05

Argentina Current 194.79 567.38 16 428.81 51.40 1.54 2.94 0.07
SSP2, 2050 538.26 271.47 41 628.02 53.79 2.72 3.00 0.09
SSP5, 2050 563.60 262.47 60 891.98 52.82 2.73 3.00 0.14

Brazil Current 506.69 18.43 13 598.31 50.37 1.52 2.77 0.05
SSP2, 2050 786.28 9.58 25 846.24 53.47 2.64 2.99 0.07
SSP5, 2050 979.74 7.93 45 060.97 52.48 2.65 2.99 0.09

China Current 177.94 1947.28 5292.69 47.79 1.27 2.60 0.08
SSP2, 2050 240.60 1658.77 39 070.21 50.61 2.50 2.97 0.16
SSP5, 2050 298.20 1500.97 67 782.94 49.93 2.50 2.97 0.18

Germany Current 2.50 2464.79 26 217.15 44.58 2.02 0.15
SSP2, 2050 19.76 2250.18 53 814.01 46.34 2.91 0.21
SSP5, 2050 26.27 2066.22 67 190.90 46.17 2.91 0.25

India Current 1035.63 126.39 5397.26 46.87 1.36 0.05
SSP2, 2050 1015.52 115.18 17 656.35 49.74 2.43 0.05
SSP5, 2050 1190.18 102.89 31 764.76 48.70 2.43 0.06

Indonesia Current 676.93 0.69 7532.69 46.79 1.47 2.76 0.05
SSP2, 2050 891.76 0.00 30 377.00 49.76 2.58 3.00 0.10
SSP5, 2050 1031.67 0.00 77 282.24 48.95 2.58 3.00 0.13

Italy Current 32.68 1654.54 30 078.02 56.68 1.61 0.10
SSP2, 2050 84.68 4.92 48 178.26 59.03 2.68 0.15
SSP5, 2050 113.26 0.00 60 394.15 58.62 2.67 0.18

Mexico Current 359.65 139.59 8807.44 49.37 1.59 2.88 0.08
SSP2, 2050 486.88 42.22 31 681.76 52.30 2.63 3.00 0.11
SSP5, 2050 566.25 40.78 54 089.87 51.45 2.63 3.00 0.12

OECD-EU Current 21.45 1945.93 31 281.15 45.04 2.09 0.23
SSP2, 2050 54.75 1499.23 52 649.87 46.39 2.88 0.14
SSP5, 2050 66.63 1398.91 62 837.04 46.12 2.89 0.17

OECD-NonEU Current 45.52 1957.53 36 970.23 46.03 2.04 0.34
SSP2, 2050 135.80 979.38 78 778.68 47.15 2.93 0.27
SSP5, 2050 164.59 848.43 119 115.84 46.99 2.94 0.29

Pakistan Current 1336.06 241.27 7902.02 46.25 1.07 2.12 0.03
SSP2, 2050 1878.83 107.90 13 124.18 48.90 2.12 2.90 0.05
SSP5, 2050 1953.75 81.64 19 056.90 47.57 2.11 2.90 0.06

United States Current 190.28 1562.99 49 283.27 52.31 2.32 0.26
SSP2, 2050 325.49 1562.28 66 269.82 53.87 2.95 0.21
SSP5, 2050 358.17 1533.52 77 524.95 53.78 2.95 0.25

42



Table B5: CO2 emissions from air-conditioning electricity use

2020 SSP2-4.5 (2050) SSP5-8.5 (2050)

Country Mean Mean Mean

Pool 365.20 691.60 948.10

Africa 0.70 2.50 4.20
Argentina 1.40 3.20 3.60
Brazil 16.70 34.30 46.90
China 159.60 267.90 318.30
India 63.80 225.10 306.20
Indonesia 9.10 21.70 38.90
Italy 2.20 5.40 8.60
Mexico 2.70 5.70 6.30
OECD-EU 7.30 17.50 23.30
OECD-NonEU 26.50 38.70 61.70
Pakistan 7.10 13.90 17.00
United States 171.30 229.00 304.10
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Supplementary Materials

Table S1: Weighted Descriptive Statistics — Africa

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 294.56 620.06 25.86 47.21 108.58 310.79 690.65
Air-conditioning (Yes = 1) 0.02 0.14

Climate and weather

CDD (100s) 23.08 10.96 2.97 20.16 27.67 29.94 32.47
CDD (100s) 24.58 10.98 4.75 21.79 29.08 31.46 33.70
HDD (100s) 0.07 0.28 0.00 0.00 0.00 0.00 0.01

Socio-economic and demographic

Total Expenditure ($2011 PPP) 4055.90 5367.09 748.82 1105.92 1859.65 5040.49 10151.82
Electricity Price ($2011 PPP / kWh) 0.27 0.06 0.23 0.24 0.24 0.34 0.34
Urbanisation Share 0.03 0.04 0.00 0.01 0.02 0.03 0.08
Home Ownership (Yes = 1) 0.52 0.50
Household Size 6.28 4.08 2.00 4.00 6.00 8.00 11.00
No Education (Yes = 1) 0.10 0.30
Primary Education (Yes = 1) 0.33 0.47
Secondary Education (Yes = 1) 0.44 0.50
Post Education (Yes = 1) 0.12 0.33
Age of Household Head 47.52 21.82 30.00 36.00 45.00 57.00 67.00
Female Household Head (Yes = 1) 0.21 0.41

Notes: Descriptive statistics are computed survey weights.

Table S2: Weighted Descriptive Statistics — Argentina

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 2433.76 4398.94 239.56 484.62 1087.77 2582.62 5733.21
Air-conditioning (Yes = 1) 0.46 0.50

Climate and weather

CDD (100s) 7.28 2.95 5.07 6.21 6.21 7.44 9.52
CDD (100s) 8.43 3.14 5.85 7.26 7.26 8.98 10.26
HDD (100s) 0.07 0.28 0.00 0.00 0.00 0.00 0.01

Socio-economic and demographic

Total Expenditure ($2011 PPP) 25682.37 22100.51 7333.79 11654.01 19648.50 32602.36 50299.60
Electricity Price ($2011 PPP / kWh) 0.82 0.77 0.13 0.29 0.88 0.88 1.69
Urbanisation Share 0.12 0.13 0.00 0.01 0.16 0.16 0.16
Home Ownership (Yes = 1) 0.70 0.46
Household Size 3.18 1.75 1.00 2.00 3.00 4.00 5.00
No Education (Yes = 1) 0.09 0.29
Primary Education (Yes = 1) 0.37 0.48
Secondary Education (Yes = 1) 0.34 0.47
Post Education (Yes = 1) 0.20 0.40
Age of Household Head 51.12 16.37 30.00 38.00 50.00 64.00 73.00
Female Household Head (Yes = 1) 0.43 0.49

Notes: Descriptive statistics are computed survey weights.
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Table S3: Weighted Descriptive Statistics — Brazil

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 2090.27 1484.72 756.00 1140.00 1740.00 2604.00 3780.00
Air-conditioning (Yes = 1) 0.19 0.40

Climate and weather

CDD (100s) 17.76 8.17 7.00 12.21 13.89 25.40 30.28
CDD (100s) 19.37 8.24 8.06 14.68 16.04 26.21 31.98
HDD (100s) 0.89 1.19 0.00 0.00 0.46 1.08 2.31

Socio-economic and demographic

Total Expenditure ($2011 PPP) 23587.53 32498.58 5457.50 8774.37 15081.70 26918.83 48577.91
Electricity Price ($2011 PPP / kWh) 0.28 0.09 0.19 0.23 0.27 0.31 0.36
Urbanisation Share 0.07 0.07 0.01 0.01 0.03 0.17 0.17
Home Ownership (Yes = 1) 0.74 0.44
Household Size 3.01 1.47 1.00 2.00 3.00 4.00 5.00
No Education (Yes = 1) 0.07 0.26
Primary Education (Yes = 1) 0.40 0.49
Secondary Education (Yes = 1) 0.36 0.48
Post Education (Yes = 1) 0.18 0.38
Age of Household Head 50.46 15.68 30.00 38.00 50.00 62.00 72.00
Female Household Head (Yes = 1) 0.42 0.49

Notes: Descriptive statistics are computed survey weights.

Table S4: Weighted Descriptive Statistics — China

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 2148.61 2678.63 590.16 969.70 1481.48 2424.24 4232.80
Air-conditioning (Yes = 1) 0.36 0.48

Climate and weather

CDD (100s) 8.24 3.89 2.97 4.76 8.47 10.38 11.87
CDD (100s) 8.69 4.07 3.86 4.98 9.11 10.43 13.52
HDD (100s) 24.99 13.28 13.49 16.98 21.66 29.38 41.40

Socio-economic and demographic

Total Expenditure ($2011 PPP) 8654.19 13511.67 1191.45 2859.47 5957.23 10723.02 16680.25
Electricity Price ($2011 PPP / kWh) 0.12 0.01 0.11 0.12 0.12 0.13 0.14
Urbanisation Share 0.07 0.07 0.01 0.02 0.04 0.09 0.14
Home Ownership (Yes = 1) 0.87 0.33
Household Size 3.78 1.80 2.00 2.00 4.00 5.00 6.00
No Education (Yes = 1) 0.28 0.45
Primary Education (Yes = 1) 0.23 0.42
Secondary Education (Yes = 1) 0.42 0.49
Post Education (Yes = 1) 0.07 0.26
Age of Household Head 47.89 16.71 25.00 35.00 48.00 60.00 70.00
Female Household Head (Yes = 1) 0.49 0.50

Notes: Descriptive statistics are computed survey weights.
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Table S5: Weighted Descriptive Statistics — Germany

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 2415.17 1296.08 1166.94 1539.47 2070.75 2942.21 4134.37
Air-conditioning (Yes = 1) 0.01 0.11

Climate and weather

CDD (100s) 1.13 0.22 0.88 0.96 1.04 1.24 1.52
CDD (100s) 2.32 0.57 1.70 2.02 2.11 2.53 3.42
HDD (100s) 28.15 1.11 26.85 27.42 27.81 28.72 29.96

Socio-economic and demographic

Total Expenditure ($2011 PPP) 29099.72 18545.79 11719.93 16435.71 25285.71 37928.57 50571.43
Electricity Price ($2011 PPP / kWh) 0.31 0.01 0.30 0.31 0.31 0.32 0.33
Urbanisation Share 0.14 0.06 0.08 0.10 0.13 0.23 0.23
Home Ownership (Yes = 1) 1.00 0.00
Household Size 1.79 1.12 1.00 1.00 1.00 2.00 3.00
No Education (Yes = 1) 0.00 0.00
Primary Education (Yes = 1) 0.20 0.40
Secondary Education (Yes = 1) 0.58 0.49
Post Education (Yes = 1) 0.22 0.41
Age of Household Head 50.42 20.87 23.75 31.00 52.00 67.00 79.00
Female Household Head (Yes = 1) 0.66 0.47

Notes: Descriptive statistics are computed survey weights.

Table S6: Weighted Descriptive Statistics — Indonesia

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 1324.28 1443.93 357.60 578.40 960.00 1596.00 2522.40
Air-conditioning (Yes = 1) 0.07 0.25

Climate and weather

CDD (100s) 23.90 5.74 15.80 20.57 25.03 28.59 29.90
CDD (100s) 24.91 5.74 16.71 21.37 25.93 29.65 31.20
HDD (100s) 0.03 0.44 0.00 0.00 0.00 0.00 0.00

Socio-economic and demographic

Total Expenditure ($2011 PPP) 9842.66 9005.16 3323.36 4917.03 7491.50 11729.88 18166.15
Electricity Price ($2011 PPP / kWh) 0.15 0.15 0.07 0.08 0.12 0.18 0.25
Urbanisation Share 0.80 0.40 0.00 0.01 0.06 0.11 0.20
Home Ownership (Yes = 1) 1.00 0.00
Household Size 3.86 1.58 2.00 3.00 4.00 5.00 6.00
No Education (Yes = 1) 0.15 0.36
Primary Education (Yes = 1) 0.33 0.47
Secondary Education (Yes = 1) 0.40 0.49
Post Education (Yes = 1) 0.12 0.32
Age of Household Head 45.94 12.39 30.00 37.00 45.00 54.00 63.00
Female Household Head (Yes = 1) 0.10 0.30

Notes: Descriptive statistics are computed survey weights.
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Table S7: Weighted Descriptive Statistics — India

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 1167.36 882.68 397.79 623.37 959.32 1434.62 2122.88
Air-conditioning (Yes = 1) 0.07 0.25

Climate and weather

CDD (100s) 27.64 5.13 22.17 25.67 27.95 30.31 33.87
CDD (100s) 28.40 5.22 22.81 26.32 28.64 31.08 34.74
HDD (100s) 1.51 4.25 0.00 0.00 0.36 1.59 3.68

Socio-economic and demographic

Total Expenditure ($2011 PPP) 5301.87 2904.82 2385.18 3457.20 4781.11 6439.58 8695.825
Electricity Price ($2011 PPP / kWh) 0.15 0.05 0.08 0.11 0.16 0.19 0.21
Urbanisation Share 0.02 0.05 0.00 0.00 0.01 0.02 0.07
Home Ownership (Yes = 1) 1.00 0.05
Household Size 4.05 1.63 2.00 3.00 4.00 5.00 6.00
No Education (Yes = 1) 0.53 0.50
Primary Education (Yes = 1) 0.29 0.45
Secondary Education (Yes = 1) 0.08 0.28
Post Education (Yes = 1) 0.10 0.30
Age of Household Head 45.94 12.39 30.00 37.00 45.00 54.00 63.00
Female Household Head (Yes = 1) 0.12 0.33

Notes: Descriptive statistics are computed survey weights.

Table S8: Weighted Descriptive Statistics — Italy

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 2763.90 1551.01 1370.63 1774.26 2375.02 3339.28 4542.93
Air-conditioning (Yes = 1) 0.43 0.49

Climate and weather

CDD (100s) 4.41 1.39 2.73 3.65 4.25 5.17 5.45
CDD (100s) 6.24 1.62 4.34 5.55 6.05 7.32 7.69
HDD (100s) 20.49 5.26 16.14 16.33 20.54 23.27 25.80

Socio-economic and demographic

Total Expenditure ($2011 PPP) 36481.53 22754.50 14458.31 20603.46 30889.67 46113.30 65731.10
Electricity Price ($2011 PPP / kWh) 0.25 0.00 0.25 0.25 0.25 0.25 0.25
Urbanisation Share 0.07 0.05 0.05 0.07 0.15 0.15
Home Ownership (Yes = 1) 0.73 0.44
Household Size 2.30 1.23 1.00 1.00 2.00 3.00 4.00
No Education (Yes = 1) 0.03 0.17
Primary Education (Yes = 1) 0.48 0.50
Secondary Education (Yes = 1) 0.34 0.47
Post Education (Yes = 1) 0.15 0.36
Age of Household Head 55.73 12.61 50.00 50.00 50.00 70.00 70.00
Female Household Head (Yes = 1) 0.36 0.48

Notes: Descriptive statistics are computed survey weights.
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Table S9: Weighted Descriptive Statistics — Mexico

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 1020.00 1811.33 176.62 298.84 505.91 963.77 2087.03
Air-conditioning (Yes = 1) 0.15 0.36

Climate and weather

CDD (100s) 9.66 10.06 0.25 0.53 5.53 18.37 25.57
CDD (100s) 10.75 10.89 0.30 0.76 6.48 19.94 28.14
HDD (100s) 5.92 5.39 0.01 0.87 4.74 10.73 11.96

Socio-economic and demographic

Total Expenditure ($2011 PPP) 12820.30 3606.75 5902.63 9589.12 15476.91 25013.37
Electricity Price ($2011 PPP / kWh) 0.27 0.04 0.23 0.25 0.30 0.30 0.30
Urbanisation Share 0.10 0.17 0.00 0.01 0.03 0.08 0.50
Home Ownership (Yes = 1) 0.70 0.46
Household Size 3.68 1.81 2.00 2.00 4.00 5.00 6.00
No Education (Yes = 1) 0.22 0.42
Primary Education (Yes = 1) 0.20 0.40
Secondary Education (Yes = 1) 0.25 0.44
Post Education (Yes = 1) 0.32 0.47
Age of Household Head 49.48 15.68 30.00 38.00 48.00 60.00 72.00
Female Household Head (Yes = 1) 0.28 0.45

Notes: Descriptive statistics are computed survey weights.

Table S10: Weighted Descriptive Statistics — OECD-EU

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 5055.94 4652.77 1588.72 2400.00 3814.09 6356.81 9535.22
Air-conditioning (Yes = 1) 0.26 0.44

Climate and weather

CDD (100s) 2.63 2.51 0.50 0.80 1.39 4.16 6.94
CDD (100s) 2.96 3.12 0.36 0.65 1.33 4.91 8.23
HDD (100s) 21.76 7.20 13.36 17.15 21.91 25.48 30.74

Socio-economic and demographic

Total Expenditure ($2011 PPP) 34064.92 17367.73 14135.19 20405.94 31820.01 44234.54 59740.24
Electricity Price ($2011 PPP / kWh) 0.19 0.08 0.13 0.15 0.15 0.24 0.24
Urbanisation Share 0.14 0.16 0.02 0.03 0.08 0.21 0.51
Home Ownership (Yes = 1) 0.70 0.46
Household Size 2.75 1.15 1.00 2.00 3.00 4.00 4.00
Primary Education (Yes = 1) 0.21 0.40
Secondary Education (Yes = 1) 0.51 0.50
Post Education (Yes = 1) 0.28 0.45
Age of Household Head 45.02 13.34 26.00 34.00 45.00 57.00 63.00
Female Household Head (Yes = 1) 0.46 0.50

Notes: Descriptive statistics are computed survey weights.
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Table S11: Weighted Descriptive Statistics — OECD-Non EU

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 5675.61 5759.40 1810.98 2889.90 4531.95 6708.44 9929.03
Air-conditioning (Yes = 1) 0.76 0.43

Climate and weather

CDD (100s) 4.75 2.91 0.94 2.33 5.09 6.98 7.814
CDD (100s) 5.25 3.04 0.97 2.58 5.44 7.80 8.39
HDD (100s) 26.69 13.49 10.62 17.79 22.05 38.56 44.69

Socio-economic and demographic

Total Expenditure ($2011 PPP) 47058.09 27508.71 16241.84 26211.27 41219.45 59798.27 74837.71
Electricity Price ($2011 PPP / kWh) 0.20 0.08 0.17 0.18 0.19 0.21 0.21
Urbanisation Share 0.22 0.19 0.01 0.05 0.19 0.34 0.43
Home Ownership (Yes = 1) 0.65 0.48
Household Size 2.80 1.49 1.00 2.00 2.00 4.00 6.00
Primary Education (Yes = 1) 0.18 0.39
Secondary Education (Yes = 1) 0.54 0.50
Post Education (Yes = 1) 0.28 0.45
Age of Household Head 45.65 12.28 28.00 37.00 46.00 55.00 62.00
Female Household Head (Yes = 1) 0.47 0.50

Notes: Descriptive statistics are computed survey weights.

Table S12: Weighted Descriptive Statistics — Pakistan

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 1791.21 2091.39 381.21 667.11 1238.92 2096.64 3526.16
Air-conditioning (Yes = 1) 0.09 0.28

Climate and weather

CDD (100s) 26.15 7.32 17.10 22.94 26.73 31.63 33.50
CDD (100s) 27.54 7.46 18.66 24.11 29.39 32.67 35.02
HDD (100s) 4.82 7.00 0.29 1.91 3.25 4.34 7.52

Socio-economic and demographic

Total Expenditure ($2011 PPP) 9665.84 7436.78 3906.88 5398.02 7761.23 11584.50 17033.55
Electricity Price ($2011 PPP / kWh) 0.33 0.00 0.33 0.33 0.33 0.33 0.33
Urbanisation Share 0.03 0.04 0.00 0.00 0.01 0.03 0.07
Home Ownership (Yes = 1) 0.84 0.37
Household Size 6.24 3.04 3.00 4.00 6.00 8.00 10.00
No Education (Yes = 1) 0.40 0.49
Primary Education (Yes = 1) 0.27 0.45
Secondary Education (Yes = 1) 0.22 0.41
Post Education (Yes = 1) 0.11 0.31
Age of Household Head 46.39 13.46 30.00 36.00 45.00 55.00 65.00
Female Household Head (Yes = 1) 0.10 0.31

Notes: Descriptive statistics are computed survey weights.
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Table S13: Weighted Descriptive Statistics — United States

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 11288.91 8077.64 3653.89 5757.37 9241.43 14604.46 21419.88
Air-conditioning (Yes = 1) 0.94 0.25

Climate and weather

CDD (100s) 8.11 4.94 3.51 5.08 6.55 11.37 16.34
CDD (100s) 8.90 5.41 3.64 4.41 7.04 12.89 17.62
HDD (100s) 22.36 11.38 6.83 12.61 25.53 29.24 35.71

Socio-economic and demographic

Total Expenditure ($2011 PPP) 85926.55 104692.42 14112.00 30240.00 59628.00 105840.00 172200.00
Electricity Price ($2011 PPP / kWh) 0.12 0.03 0.10 0.10 0.11 0.12 0.19
Urbanisation Share 0.28 0.16 0.08 0.15 0.25 0.49 0.50
Home Ownership (Yes = 1) 0.64 0.48
Household Size 2.55 1.47 1.00 1.00 2.00 3.00 5.00
Primary Education (Yes = 1) 0.09 0.29
Secondary Education (Yes = 1) 0.49 0.50
Post Education (Yes = 1) 0.42 0.49
Age of Household Head 51.38 16.48 30.00 38.00 51.00 64.00 74.00
Female Household Head (Yes = 1) 0.48 0.50

Notes: Descriptive statistics are computed survey weights.
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Figure S1: Heat maps of (A) AC ownership and (B) household electricity consumption, by country. Each facet maps the average level of the two
variables at each expenditure and CDDs quintiles intersection in each country. N.B.: expenditure and CDDs quintiles are specific to each country.
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Figure S2: Country coverage
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Figure S3: Bias in AC prevalence between survey data (pre-2020) and first projection timestep (2020).

53



Figure S4: Bias in total household electricity consumption between survey data (pre-2020) and first projection timestep (2020).

54



55


	Introduction
	Data
	Household survey data
	Historical climate data
	Descriptive Statistics

	Theoretical framework
	Empirical framework
	Results
	The effect of air-conditioning on residential electricity consumption
	Heterogeneity
	Air-conditioning and the role of other influencing factors
	Implications for household budget
	Robustness checks

	Projections
	Method and data for projections
	Future projections of household air-conditioning electricity

	Discussion
	Implications for household electricity expenditure
	Implications for electricity supply systems
	Implications for emissions and climate policy

	Conclusion
	References
	Data description
	Additional results

