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Abstract

We provide a first globally-relevant assessment of the electricity consumption consequences
of households’ adaptation to ambient heat through air conditioning (AC). We use household
survey data from 25 countries within a discrete-continuous choice empirical framework to
model households’ joint air conditioning adoption and utilization decisions, and combine
the estimated responses with scenarios of socioeconomic, demographic, and climatic change
to project air conditioning prevalence and cooling electricity demand circa mid-century. We
find that air conditioning ownership increases households’ electricity consumption by 36%,
on average, but the effect is heterogeneous, varying with weather conditions, income and
country contexts, revealing the importance of behaviors, practices, climate, and technologies.
Compared to the other drivers of electricity consumption, air conditioning has the leading
marginal effect, also accounting for a significant share of household budgets. By 2050, the
overall effect is a net increase in global yearly residential cooling electricity to 976-1392 TWh,
with an additional 692-948 Mt of CO2 emissions, and associated social costs of $128-175 bil-
lion. Our findings highlight cooling energy expenditure as an emerging indicator of energy
poverty as the climate warms, and provide an initial quantification of the economic and en-
vironmental risks associated with air conditioning as an adaptation to climate change.
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1 Introduction

The impacts of climate change are already being felt across the world (Pörtner et al., 2022; Dyer,
2022). There are widespread increases in detrimental exposure to extreme heat (Biardeau et al.,
2020; Jay et al., 2021) as a consequence of rising temperatures, growing economic inequality,
expanding informal urbanization, and population aging (Carr et al., 2023). Air conditioning
(AC), a major large-scale adaptation option used to shield individuals from heat exposures, is
also increasing globally (Turek-Hankins et al., 2021). Air conditioning’s protective benefits in-
clude significant reductions in morality (Barreca et al., 2016), as well as ameliorative effects on
learning (Park et al., 2020) and mental health outcomes (Hua et al., 2022). However, widespread
use of air conditioning has important repercussions on households’ expenditure and welfare
(Mansur et al., 2008; Randazzo et al., 2020; Barreca et al., 2016), economy-wide energy demand
and electricity systems (Auffhammer and Mansur, 2014; Auffhammer et al., 2017), emissions
of greenhouse gases (GHGs) and other air pollutants (Colelli et al., 2022), and climate change
mitigation policy (Rode et al., 2021). The latter consequences are only just beginning to be sys-
tematically quantified.

To our knowledge, this paper provides the first near-global scale, micro-founded empirical
quantification of the electricity use associated with air conditioning. Our analysis employs a
two-stage discrete-continuous framework that facilitates evaluation of the long-run effects of
climate warming. We assemble a cross-sectional database of household air conditioning owner-
ship and patterns of electricity consumption and expenditure across 25 countries that account for
62% of the world’s population and 73% of global electricity consumption, which we use to assess
the current and future demand for residential cooling electricity and its sources of heterogeneity.

As a guidance for the empirical analysis, we develop a simple adaptation model to frame the
main adaptation strategies that welfare-maximizing households can pursue to cope with ex-
treme heat: the extensive-margin adjustment of purchasing cooling appliances, namely air con-
ditioning units, and the intensive-margin adjustment of consuming the quantity of energy that
determines the level of utilization of these durables (Auffhammer and Mansur, 2014). This
discrete-continuous setting motivates our use of the econometric framework developed by Du-
bin and McFadden (1984) to estimate households’ adaptation behaviour through adoption of
air conditioning and its subsequent utilization for cooling via electricity consumption. Our ap-
proach accounts for the correlation between the two adaptation margins, and identifies the long-
run impact of temperature on electricity consumption.

We find that AC-owning households consume, on average, 36% more electricity than those with-
out the technology. This response is increasing and concave in temperature, reaching a peak of
57%. However, there is considerable heterogeneity in responses across income levels and coun-
tries, which is suggestive of differences in practices, behaviors, and technologies. Factors such
as education, gender, age, urbanization, and housing quality all play a role in explaining pat-
terns of energy use and expenditure in both high-income and emerging economies (Ameli and
Brandt, 2015; Krishnamurthy and Kriström, 2015). To shed further light on this phenomenon,
we first compare electricity demand’s response to air conditioning with its responses to income
and other socio-economic and demographic drivers through a descriptive meta-analysis of the
standardized coefficients obtained from country-specific regressions. Our results broadly cor-
roborate prior findings, but highlight the fact that when air conditioning is available, it exerts the
largest influence on residential electricity consumption. Second, we compare air conditioning
utilization to those of other electrical appliances, e.g. refrigerators. Interestingly, air conditioners
appear as the only appliance whose utilization responds to warm temperatures.

Our fitted empirical model allows for the computation of household-level quantity of electric-
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ity used to operate air conditioning. By multiplying our estimates with statistics on electricity
prices, we are able to highlight a previously underappreciated aspect of energy poverty, namely
’cooling poverty’, which affects low-income households who own air conditioners. Our findings
indicate that this burden is regressive, with expenditure shares decreasing along the income dis-
tribution. High-income households allocate between 0.2% to 2.5% of their expenditure on air
conditioning use, while the poorest households may spend up to 8% of their budget on electric-
ity for cooling.

In light of the increasing prevalence of residential solar energy, we investigate the potential
mitigating effects of solar power generation on the electricity demand for cooling. Our find-
ings show that households in areas with higher-than-sample-median photovoltaic (PV) power
generation are associated with 25% less electricity for cooling than those in lower-PV regions,
though the estimates lack precision. Moreover, the interaction between the actual amount of PV
generation and electricity prices suggests a possible moderating effect of decentralized power
generation on households’ electricity consumption.

Looking ahead to the next decades, the combination of our estimates with future projections
of climatic, economic, and socio-demographic drivers shows that increases in population, per-
capita income, and temperatures are associated with a significant expansion in residential air
conditioning adoption and related electricity demand by mid-century. The average household’s
annual cooling electricity consumption rises from 1,610 kWh in 2020 to 1,869-2,069 kWh by 2050,
depending on the socio-demographic and climate change scenario considered. This is almost on
par with today’s cooling electricity use of the average household in the United States, 2,680 kWh.

We conclude our analysis with a back-to-the-envelope assessment of the potential implications
of surging residential cooling electricity demand for energy and climate policy. Taking India as
an example, we estimate that satisfying the cooling-driven increase in peak electricity demand
may require a 18% to 29% expansion of generation capacity. Worldwide, similar induced ex-
pansion of electric power production are associated with GHG emission increases of 692-948
MtCO2 in 2050, generating a “social cost of residential cooling energy” of $128-175 billion, based
on recent estimates for the social cost of carbon. This result underscores trade-offs between
adaptation and mitigation as a key challenge that will accompany households’ adjustment to
heat exposures (Colelli et al., 2023b).

Our analysis makes three primary contributions to the existing literature. First, we contribute to
the literature on how energy consumption responds to climate change (Deschênes and Green-
stone, 2011; Davis and Gertler, 2015; Auffhammer, 2022) by explicitly accounting for the specific
role of air conditioning in electricity demand amplification. Recent research has uncovered the
determinants of the air conditioning adoption decision, regionally (Romitti et al., 2022), in both
emerging (Pavanello et al., 2021; Falchetta and Mistry, 2021) and developed (De Cian et al., 2019)
economies, as well as globally (Andrijevic et al., 2021; Davis et al., 2021; Falchetta et al., 2024).
Income is the leading driver in less affluent, hot areas (Davis and Gertler, 2015; Davis et al.,
2021; Pavanello et al., 2021), whereas temperate, industrialized countries are relatively more re-
sponsive to thermal discomfort arising from more frequent hot days (De Cian et al., 2019). Air
conditioning adoption and use are imperfectly correlated (Ara Begum et al., 2022), reflecting
the moderating effects of socioeconomic conditions as well as individuals’ and households’ het-
erogeneous lived experiences adapting to extreme high temperature exposures. The response of
energy use to weather and climatic conditions (Auffhammer and Mansur, 2014; Deroubaix et al.,
2021) is well documented for individual (Davis and Gertler, 2015; Zhang et al., 2020), multiple
(Davis et al., 2021) countries, regions (Romitti et al., 2022), cities (Romitti and Sue Wing, 2022),
and even globally (Van Ruijven et al., 2019). Yet, electricity consumption for specific end uses,
such as cooking or space conditioning, is not metered and can only be indirectly inferred using
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engineering (Bezerra et al., 2021) or econometric methods (Obringer et al., 2022).

A key challenge is to consistently characterize households’ correlated adjustments along the
extensive margin of air conditioning adoption and the intensive margin of cooling electricity
consumption. Prior studies have addressed this issue in different ways, each with its own
advantages and limitations. Davis and Gertler (2015) stratify electricity demand responses in
Mexico according to air conditioning prevalence, estimating the intensive margin in Mexican
states with current high levels of air conditioning penetration. The resulting response functions
are used to project how households in the other Mexican states would behave if they were to
reach the same level of air conditioning penetration. This approach suffers from two key short-
comings: lack of a correction for sample selection bias associated with households’ differential
likelihood of air conditioning ownership, and the use of different samples to estimate air con-
ditioning penetration and electricity demand. Randazzo et al. (2020) apply a control function
approach to empirically model the long-term effects of temperature in a cross-sectional data
set where intensive- and extensive-margin adjustments are observed for the same households
across eight developed, temperate countries. However, they only the estimate average marginal
effect of air conditioning on electricity demand without characterizing the moderating effects
of weather conditions on utilization. The latter is the focus of Auffhammer (2022), who uses a
two-step approach to model household electricity demands in large dataset of utility bills for the
state of California. In the first stage, demand is modeled using locationally-varying responses
to contemporaneous temperature shocks, and in the second-stage the resulting response coeffi-
cients are modeled as a function of long-run climate variables to capture the climate response.
However, unlike Davis and Gertler (2015), household-level billing information is not matched
to either household- or location-specific estimates of air conditioning prevalence, leaving the
precise role of cooling implicit.

These studies are limited in geographic scope. The key question is the extent to which their
results reflect extensive- and intensive-margin responses that are globally valid, and, symmet-
rically, whether differences across these studies might reflect methodological variation or more
fundamental moderation of responses by climatic, socioeconomic and demographic conditions.
The answer has enormous implications for how, as economies and household incomes grow,
and warm-season temperatures rise with climate change, private adaptation could expand—
with increasing unintended consequences for energy consumption, GHG emissions, and social
inequality. Refining Randazzo et al.’s (2020) two-stage empirical model, we expand its appli-
cation to a broad slate of world regions, including many developing and emerging areas, ex-
ploiting survey microdata that record air conditioning ownership and electricity use in the same
households. This broader application allows us to capture a more comprehensive and nuanced
view of air-conditioning demand globally, thus providing critical insights into how adaptation
behaviors may evolve in different contexts.

Second, our results characterize the distributional implications of cooling electricity consump-
tion, and contribute to updating the definition of energy poverty—a concept that has tradi-
tionally been associated with the inability to keep a home warm at reasonable cost (Bradshaw
and Hutton, 1983) while neglecting excessive expenditure arising from cooling needs. We de-
fine cooling poverty through an expenditure-based approach (Boardman, 1991) and provide a
first multi-country, comparative assessment of the distributional implications of using air condi-
tioning, contributing to the emerging literature looking into summer poverty. Summer poverty
considers the inability of households to keep a house cool in summer times due low-income,
high costs, and inefficient housing stock (Sanchez-Guevara et al., 2019). To date, existing as-
sessments have been limited to local case studies, and cross-country comparisons have yet to
be conducted. Our analysis considers actual air conditioning expenditure, whereas other (Pa-
vanello et al., 2021; Mastrucci et al., 2019) look at the potential for cooling poverty by intersecting
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the lack of air conditioning with exposure to high ambient temperatures.

Finally, our paper contributes to the literature on the interaction between mitigation and adap-
tation in the residential energy sector. First, our results provide suggestive evidence that PV
systems have the potential to reduce the burden of air conditioning usage on electricity con-
sumption and expenditure, enhancing energy security and affordability for households. To the
best of our knowledge, the only other study addressing this interplay is that of Colelli et al.
(2023a). In the context of an Italian province, the paper shows that, when equipped with solar
PV households extract 68% less electricity compared to the extraction before the installation of
the PV technology. Moreover, they are less responsive to warm temperatures, and less exposed
to price shocks. Second, we present an initial quantification of the social cost of CO2 emissions
driven by increased electricity use for cooling. Our estimates complement recent assessments
of the contribution of warming-induced energy expenditures to the social cost of carbon (SCC)
(Rode et al., 2021). However, our analysis specifically focuses on the residential electricity sector,
providing a targeted perspective on the sectoral impacts of climate change on energy demand
and associated emissions.

The remainder of the paper is organised as follows. Section 2 presents our newly constructed
data set and some descriptive statistics. Section 3 provides the theoretical framework underlying
our analysis. Section 4 shows our empirical approach. Results are discussed in Sections 5 and 6,
and the concluding remarks in Section 7.

2 Data

2.1 Household survey data

We assemble a globally-relevant household micro-dataset covering a large number of sub-national
administrative units from 25 countries. Together, these countries represent 62% of the world’s
population and account for more than 70% of the global electricity consumption. Table 1 lists
the countries included in the database, the macro-region of belonging, the year(s) when the in-
terviews were carried out, and the number of households included in the final pooled database
for each country. Overall, our dataset includes 692,718 households.

From each survey we gather information on annual expenditure on and (where available) con-
sumption of electricity, ownership of any kind of air conditioning, total household expenditure,1

and a range of socio-economic and demographic variables. We restrict our sample to house-
holds without missing data for either air conditioning or electricity use. This choice effectively
excludes households without access to electricity in the year they were surveyed. We also collect
information on the ownership of other basic electrical appliances, such as refrigerators, televi-
sions, computers and washing machines. However, broad appliance ownership is not recorded
for all countries.2

In instances where electricity consumption was not reported, we augment the survey with in-
formation on average electricity prices to impute the implied annual electricity consumption
quantities. Electricity prices are either directly obtained dividing electricity consumption by
quantity or collected at country or sub-national level from external sources.

Similarly, indicators of households’ location in a urban or rural area were not reported for all
countries, and, where they were recorded, the definition of urban varied across countries. To

1When it is not available we collect information total household income. We prefer total household expenditure
because it is a more reliable measure of spending power in less developed countries (Davis et al., 2021).

2We exclude some appliances such as oven or microwave since they are available only for very few countries.
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address this inconsistency we use gridded data on urbanization from Gao and Pesaresi (2021)
to construct the population-weighted urban fractions for each sub-national region, a continuous
indicator which we assigned to the households residing in each region.3

2.2 Historical meteorological data

We describe the weather and climatic conditions using the degree-day metric common in energy
studies (ASHRAE, 2009; Scott and Huang, 2008). We use cooling and heating degree days (CDDs
and HDDs, respectively), computed as the sum over the year of deviations of average daily
temperatures above (CDDs) or below (HDDs) a temperature threshold, T∗ (Deroubaix et al.,
2021):

CDD =
365

∑
d=1

(γd)(T − T∗) and HDD =
365

∑
d=1

(1 − γd)(T∗ − T)

where γd is the binary multiplier.

Our raw temperature data come from two sources. Our primary source is the ERA5 historical
climate reanalysis dataset of hourly dry-bulb temperatures on a global 0.25◦grid over the period
1970-2019 (Hersbach et al., 2020). We adopt the temperature threshold of 18 ◦C.4 We compute
CDDs and HDDs at each grid cell, and then aggregate the results to the sub-national geograph-
ical unit of the surveys using population weights for the corresponding survey years. Climatic
CDDs and HDDs are computed as the average of annual CDDs and HDDs over the 30-year
period prior to each survey year. Finally, we merge household data with the resulting HDD
and CDD series at the finest geographic scale available (i.e., provinces or districts) to construct
representative household-level ambient short- and long-run meteorological exposures.

2.3 Additional data

We also gather additional data from various sources and combine them with our household-
level dataset. We use these information for auxiliary analyses.

Solar PV potential output. We collect spatial data on PV power potential from the Global So-
lar Atlas.5 PV power potential (also called PVOUT) represents the potential amount of power
generated per unit of the installed PV capacity over the long-term, and it is measured in kilo-
watthours per installed kilowatt-peak of the system capacity (kWh/kW peak). We then compute
the average PV potential at the smallest administrative unit available in each country.

PV generating capacity. We also obtain spatial data on solar PV generating capacity from the
Global Inventory of Utility-Scale Solar Energy Installations (Kruitwagen et al., 2021).6 This is the
first global inventory of commercial, industrial, and utility scale solar energy stations. It iden-
tifies about 70,000 facilities around the world, and it has information on the capacity installed
in MWp. This dataset covers solar energy stations between June 2016 to October 2018. Based
on the installation year attribute of the PV data set, we only consider the capacity that was in-
stalled before the year in which the household survey was conducted in each region. We use
these filtered data entries to compute the cumulative PV generating capacity installed in each
administrative unit before the household survey year. When survey year is after 2018 we use
information up to 2018 to compute capacity. This information allows us to build a proxy of the
differences in current installed PV generating capacity across countries.

3See Supplementary information for additional information on how we assemble the data set.
4In addition, to assess the robustness of our results we construct CDDs and HDDs using temperature thresholds

of 24 and 15 ◦C respectively.
5Data are downloaded from https://globalsolaratlas.info/global-pv-potential-study
6Data are available for download here: https://resourcewatch.org/

5

https://globalsolaratlas.info/global-pv-potential-study
https://resourcewatch.org/


2.4 Descriptive statistics

Table 2 describes the average households’ characteristics for the global pooled dataset.7 Focus-
ing on the two main dependent variables, across the pool of the 25 countries considered, on
average, a household consume 2,439 kilowatt-hour (kWh) per year, whereas air conditioning
prevalence is around 26%. A high degree of heterogeneity in the distribution of both variables is
observed across and within countries. Critically, other electrical appliances like refrigerators and
televisions are three times more widespread than air conditioning in the sample. This suggests
a potential hierarchy on which appliances are firstly adopted by households.

Figure 1 suggests that the between-country difference in cooling energy (Panels A and B) is
highly explained by the income level (approximated by the total expenditure shown in panel
D). For instance, in the United States, the median household uses the highest amount of elec-
tricity and consumes about five times more than a median household in a developing country
irrespective of a generally smaller household size. Crucially, areas with a warmer climate in-
stead display lower levels of electricity demand and air conditioning penetration. Indeed, the
countries with the highest ownership of air conditioning are United States, Japan and Australia,
whereas the lower rates are reported in Africa and in South-East Asia. However, the within-
difference across households in the same country is also important to explain the patterns in
cooling energy, with the interaction between warm temperatures and income driving the adop-
tion and use of air conditioners (Figure A1). Looking at the other determinants, most of the
families own their dwelling (82%), and they usually consist of four members. Male heads of
households are slightly predominant (68%), whereas their educational background is quite het-
erogeneous, with 31% having at least a secondary education degree.

3 Theoretical framework

To guide our investigation we develop a simple model of households’ joint decision to ad-
just along the intensive and extensive margins. Consider a representative household who de-
rives long-run utility, u, from the consumption of a generic good, x—which we treat as the
numeraire—, and thermal comfort, T :

u = u(T , x) (1)

where uT , ux > 0. Thermal comfort is a function of current ambient conditions, c, and electricity
consumption, q, as adjusting energy use is one of the main adaptations under the household’s
direct control:

T = f (c, q(c); z) (2)

In general, thermal comfort declines with positive or negative deviations from a “bliss point”,
or ideal ambient indoor temperature at which space conditioning is unnecessary. The latter is
not directly observed but is modulated by various characteristics of the household, z. For clarity
and analytical tractability we focus on situations of ambient excess heat. Hence, we can define q
as cooling electricity consumption. Treating c as synonymous with high temperature anomalies
suggests that fc < 0 and fq ≥ 0, while consuming additional energy for cooling in order to
moderate excess indoor temperatures implies qc > 0.

Households maximize utility subject to Equation 2 and a budget constraint (Equation 3) defined
over income, y, generic expenditure and adaptation costs, k(q(c)):

x + k(q(c)) ≤ y (3)

7Country/region-specific descriptive tables are reported in the Supplementary information.
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with kq > 0. The solution to the household’s utility maximization problem is the optimal level
of cooling energy consumption, q∗. Given the dependence of both thermal comfort and electric-
ity consumption on climate, totally differentiation of the thermal comfort production function
yields:

dT
dc

=
∂T
∂c︸︷︷︸

Direct discomfort < 0

+
∂T
∂q∗

· dq∗

dc︸ ︷︷ ︸
Cooling adaptation > 0

indicating that high temperatures directly reduce thermal comfort but can be wholly or partially
offset by induced increases in cooling electricity consumption.8

Provision of thermal comfort is one the strongest drivers of air-conditioning demand and use
(Jay et al., 2021); accordingly we focus on air conditioning as the technology that households
adopt to effectively maintain their thermal comfort. Other cooling strategies exist, especially
in countries with hot and humid climates. In India, for example, fans are still preferred to air-
conditioning units and evaporative coolers (Khosla and Bhardwaj, 2019). However, the cooling
effectiveness of fans is comparatively low (Malik et al., 2022), and above certain income thresh-
olds air conditioning appears to be the technology of choice (Pavanello et al., 2021). The house-
hold’s cooling electricity demand is thus conditional on the availability of air conditioning, a:

q = q(c | a)

In turn, air conditioning ownership is a function of the expected climate at the household’s lo-
cation, c, and the cooling efficiency of air-conditioning capital—i.e., the average transformation
efficiency of energy into thermal comfort in that weather conditions—, η, in addition to the
households income and other characteristics:

a = a(c, η, y, z)

The household adjusts along the intensive margin in response to short-run temperature fluctu-
ations, and along the extensive margin in response to long-run changes in the expected climate.
The first order conditions of the household’s problem yield the equilibrium condition equalizing
the cost and benefit of cooling energy consumption at the margin:

∂k(q∗(c | a))
∂q(c | a)︸ ︷︷ ︸

marginal cost of adaptation

= MRST ,x ·
∂ f (c, q∗(c | a))

∂q(c | a)︸ ︷︷ ︸
marginal benefit of adaptation

(4)

where MRST ,x denotes the marginal rate of substitution between thermal comfort and the nu-
meraire. In the simplest case of adaptation costs that are linear in electricity prices, pq, and
air-conditioning capital costs, pa, such that:

k(q(c)) = pqq(c) + pa

That is, the left-hand side of the Equation 4 reduces to pq, yielding the conditional demand
function electricity

q∗ = q(c, pq, y, z | a(c, η, y, z))) (5)

Thus, to determine the long-term effects of climate change on electricity consumption, we need
to simultaneously identify the two margins of adaptation by empirically distinguishing the di-
rect effect of contemporaneous meteorological conditions, c, on energy demand conditional on
air conditioning ownership, from the indirect effect of long-term climate, c, on the decision to
adopt air conditioning.

8In line with Mansur et al. (2008), we assume that marginal adaptation costs, e.g., electricity prices and capital
costs of cooling appliances such as air-conditioning units, are invariant to climate change.
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4 Empirical framework

Following Equation 5, we estimate the optimal conditional electricity demand using a discrete-
continuous econometric framework in which each household, h, simultaneously chooses whether
to adopt air conditioning, and, conditional on their decision, the level of utilization of air-
conditioning capital by choosing how much cooling electricity to consume. Our basic model
of the latter intensive-margin electricity demand adjustment is:

Qh = β1ACh + β2ACh × f (CDDi(h)) + β3 f (CDDi(h))

+ β4Yh + β5Ph + χ′Zh + νA(h) + εh
(6)

in which Q is the natural logarithm of electricity consumption (in kWh) and AC is a dummy
variable that equals 1 if a household has an air conditioning installed in its dwelling, and 0 oth-
erwise. The function f (CDDi(h)) is a second-degree polynomial of the contemporaneous annual
CDDs experienced in the most disaggregated administrative area available for each country, i,
during the survey year, reflecting the nonlinear response of electricity to temperature (Davis and
Gertler, 2015; Auffhammer, 2022). The interaction AC × f (CDD) tests whether air conditioning
amplifies electricity demand increases when heat exposure goes up or it occurs in warmer lo-
cations. We expect a concave relationship, reflecting the unobserved capacities of households’
air-conditioning units and associated latent upper bounds on cooling electricity use, and sharply
diminishing returns to additional electricity consumption once the desired thermal comfort level
has been achieved. The variables Y and P are respectively the natural logarithms of total house-
hold expenditure and electricity prices ($2011 PPP). We also include a vector Z of demographic
and housing characteristics.9 Finally, we account for time-invariant unobservable factors (e.g.
preferences) by including fixed effects, νA(h), defined at the level-1 subnational administrative
divisions (ADM-1) inhabited by each household.10 The error term, ε, is clustered at the ADM-1
level, and captures the residual unobserved variation in the outcome.

Air conditioning is likely endogenous to electricity demand, generating correlation between the
error term, εh, and ACh. Not only there is simultaneity as households’ air conditioning adoption
and utilization decisions are not independent, the two decisions also likely share unobserved
common determinants. For instance, the natural ventilation of a housing unit is likely correlated
with both the adoption and the use of air conditioning. These issues can addressed by estimat-
ing Equation 6 with a discrete-continuous choice approach, as in Mansur et al. (2008), Davis and
Kilian (2011) and Barreca et al. (2016), using the methodology proposed by Dubin and McFad-
den (1984). This consists of a control function approach that allows the error term in the indirect
utility function underlying the decision to adopt air conditioning to be correlated with the error
term in the electricity demand equation. Specifically, we make two assumptions: (i) the errors
in the air conditioning ownership decision are independent and identically distributed extreme
value type I, and (ii) the electricity demand equation’s errors are a function of the air condition-
ing decision equation’s errors, essentially capturing the unobservable factors that influence air
conditioning prevalence and might affect electricity consumption as well. We control for the cor-
relation among the errors by including a (selection) correction term that is constructed from the
predicted probabilities from a first-stage logistic regression with air conditioning as the outcome
variable:

ACh = γ1 f (CDDi(h)) + γ2Yh + γ3 f (CDDi(h))× Yh + γ4 f (CDDi(h))

+ γ5Ph + γ6Xh + ψ′Zh + µA(h) + uh
(7)

9We include the socioeconomic and demographic variables that are available for all the countries. Particularly,
we control for a second-degree polynomial of contemporaneous annual heating degree days, regional urbanization,
education level of the head, age of the head, gender of the head, household size and home ownership.

10Cross-country comparisons of expenditure, prices, and other survey variables are not straightforward, since data
are collected in different countries and from different agencies. By including ADM-1 level fixed effects, we reduce to
some degree these concerns about measurement error.
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where f (CDD) is a second-degree polynomial of long-run CDDs in the most disaggregated
available administrative area. The vector X contains interactions of electricity prices with CDD,
household size, and home ownership. Hence, our identification comes from a combination of
the logit functional form and the exclusion from the second stage of the long-term CDDs and of
the various interaction variables. The demand equation we estimate then becomes:

Qh = β1ACh + β2ACh × f (CDDi(h)) + β3 f (CDDi(h))

+ β4Yh + β5Ph + χ′Zh + λζh + νA(h) + εh
(8)

where ζ is a correction term that is a function of first-stage predicted probabilities, π̂h,

ζh =

{
(1−π̂h) ln(1−π̂h)

π̂h
+ ln π̂h if ACh = 1

π̂h ln π̂h
1−π̂h

+ ln(1 − π̂h) Otherwise
(9)

The correction term approximates the components of εh that are correlated with ACh (Wooldridge,
2015). As well, we estimate the first and second stage using survey weights to ensure that our
results are representative of the populations in the surveys.

Our fitted empirical model enables us to estimate the electricity associated with the utilization of
air conditioning for cooling. Cooling electricity (QAC) is imputed using a counterfactual calcu-
lation of the difference in the level of predicted consumption with and without air conditioning
for the subset of AC-owning households in our sample, h(ACh = 1):

QAC
h(ACh=1) = exp(Q̂h(ACh=1)|AC = 1)− exp(Q̂h(ACh=1)|AC = 0) (10)

In turn, this calculation facilitates projections of future cooling electricity consumption in re-
sponse to shifts in socio-economic and demographic drivers with economic development and
in temperature with warming. The key difference is that in the future, households that are pre-
dicted to have access to air conditioning expand beyond the AC-owning subset in the sample
(see Appendix A.1 for details).

Our empirical strategy is subject to two main caveats. First, average electricity prices in the
second stage are likely to be endogenous. For some surveys we compute prices as dividing
observed electricity expenditures by reported consumption, a procedure that introduces simul-
taneity (division bias) between P and Q in Equation 8 (Borjas, 1980). Additionally, for most
countries we collect aggregate data at either the sub-national- or the country-level from various
sources. On one hand, the fact that households respond to average rather than marginal elec-
tricity prices (Ito, 2014) is reassuring but, on the other hand, this procedure likely introduces
measurement error. Taken together, these issues are sufficiently challenging that we are unable
to address them fully. We argue that this should not be cause for concern because prices serve
the role of controls, and price elasticities of demand are not the focus of this study. Furthermore,
prices play no role in our mid-century projections: to be able to consider them we would need
general equilibrium simulations of electricity market conditions or assumptions about future
price regimes in disparate regions (Auffhammer, 2022). Nonetheless, we do perform some ro-
bustness checks, such as excluding electricity prices, including interactions of electricity prices
with income decile dummies, and instrumenting electricity prices.

Second, our survey data sets are uninformative about either the energy efficiency or the capacity
of households’ air-conditioning units, which jointly determine the parameter η in our theoreti-
cal model. Including income as an explanatory variable potentially controls for the likelihood
that richer households purchase appliances that are simultaneously higher capacity and more
energy efficient. Penetration of air conditioning is indeed not as widespread as that of other
technologies such as refrigerators or washing machines, and is relatively concentrated among

9



high-income households, especially in developing economies. However, we note that ultimate
impact is uncertain. On one hand, more efficient cooling appliances require less electricity to
produce a given amount of cooling. On the other hand, richer households are likely to have
higher willingness and/or ability to pay for air-conditioning units with larger cooling capacities
and higher total electricity consumption. Depending on whether the first or the second effect
dominates, the marginal effect of air conditioning on electricity consumption may decrease or
increase with income, respectively.

5 Results

We first present the results of our global, pooled model across all countries, characterizing the
average relationship between air conditioning, electricity demand, and their income, climatic,
and socioeconomic and demographic drivers. Next, we examine the heterogeneity of air condi-
tioning effects across different income levels and countries. In addition, we contextualize the role
of air conditioning as a key driver of electricity demand relative to other determinants, includ-
ing other electrical appliances. Finally, we use the climate, household, and geography-specific
estimated model parameters with scenarios of the drivers to project air conditioning prevalence
and cooling electricity consumption circa 2050.

5.1 The effect of air conditioning on residential electricity consumption

Baseline. Table 3 shows the estimated impacts of air conditioning ownership on household
electricity consumption. We first estimate Equation 6 as a baseline for the analysis (columns
1-3). When ignoring the potential endogeneity of air conditioning, we find that owning at least
one air conditioner is associated with an increase in the electricity demand by 38-60%, ceteris
paribus. However, as previously discussed, these estimates are likely to be biased.

In column 3 we highlight the result of addressing endogeneity via our two-step approach. The
correction term is always significant and negative (Table A1), suggesting that it is important to
control for endogeneity and that the OLS estimates are upward biased. A reason for the positive
bias is that owners of air-conditioning units are positively selected as they. Compared to the
previous specification, the effect of air conditioning is still significant but smaller in magnitude.
Having the technology installed in one’s dwelling increases electricity consumption by 36%. In
column 4, we also add interactions between AC and CDD. At zero CDDs, the appliance is not
used. Above this threshold, the effect of air conditioning is increasing and concave in cooling
degree days (Figure 2), amplifying residential electricity consumption by up to 57%.

Our results align with previous estimates. Randazzo et al. (2020) find that air conditioning in-
creases electricity expenditure by 35% in eight OECD countries, while DePaula and Mendelsohn
(2010) find an effect size of 23-33% in Brazil. Finally, model simulations from IEA (2018) indicate
cooling demand can account for 50% or more of total electricity demand in countries with a long
summer period.

The coefficients of the other covariates (Table A1) are in line with recent studies that have ex-
plored the determinants of electricity consumption across multiple countries (Randazzo et al.,
2020; Pavanello et al., 2021). We find a positive effect of total household expenditure on electric-
ity consumption. A 1% rise in total expenditure increases electricity consumption by 0.32% in
our preferred specification. Contemporaneous weather conditions—CDD and HDD—also have
significant positive effects, even when we introduce the interactions with air conditioning. On
one hand, the uninteracted terms of CDD likely indicate the use of lightning and other appli-
ances as households tend to spend more time at home when it is hot outside. On the other hand,
the effect of HDD likely capture the use of electric heating systems. Regarding electricity prices,
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we find an elasticity of -0.41, which is in the range of previous estimates,11 but this result should
be interpreted with caution in light of the aforementioned endogeneity and measurement error
concerns. Urbanization share has a positive, but not significant effect. While a negative effect of
urbanization is a common finding especially in developed countries (Randazzo et al., 2020),12 the
literature points at an opposite results in developing countries (Agrawal et al., 2019; Pavanello
et al., 2021). Of two competing mechanisms, we find that the latter slightly prevails at the global
level. Our findings also suggest that age and gender of the household head, household size,
home ownership and education level are all positive determinants of residential electricity con-
sumption.

Table A2 reports estimates from the air conditioning ownership model. Columns 1-2 show the
results from a linear probability model (LPM), whereas columns 3-4 depicts the coefficients and
marginal effects from the logit regression, that is our first-stage results. Again, our findings
are consistent with the existing literature (De Cian et al., 2019; Randazzo et al., 2020; Pavanello
et al., 2021; Davis and Gertler, 2015; Davis et al., 2021). We find that long-term climate conditions
significantly shape air conditioning ownership. The relationship between air conditioning and
long-term CDDs is concave, reminiscent of a classical S-shaped adoption curve. A 100-degree
day increase in the long-term average of CDD makes the probability of adopting the technology
grow by 3.1-5.5 percentage points. This effect is increasing in expenditure, suggesting again the
importance of the income-climate relationship. Expenditure indeed remains a key driver, as air
conditioning ownership increases by 0.08 percentage points when expenditure grows by 1%. Fi-
nally, regional urbanization, household size, house ownership, household head age, education,
and gender are all significant drivers of adoption.

Robustness checks. Robustness checks further corroborate our baseline results. In columns
1-4, Table A3, we test for alternative fixed effects, replacing ADM-1 dummies, with fixed effects
at, first, the most disaggregated sub-national level available for each country, and, second, at
the country level. We find that our results remain consistent. Notice that with the former we
lose more observations, as the logit regression drops observations that perfectly predict 0 or 1
outcome.

Defining a threshold for CDD and HDD is usually arbitrary. We then re-estimate our discrete-
continuous regressions, constructing these variables with alternative thresholds, particularly 24
and 15 ◦C for CDD and HDD respectively (Table A3, columns 5-6). We find similar effects to
our main specification. However, even interacting air conditioning ownership with CDDs, the
main coefficient on air conditioning remains significant. This is likely due to the fact that in this
specification CDDs and HDDs no longer share a common temperature threshold, resulting in
an omitted category of moderate temperature exposure—i.e., degree days between 15 and 24
◦C—which ends up being correlated with the air conditioning dummy.13

Because electricity prices are likely to be endogenous, we test whether their inclusion might in-
fluence on our results. First, in columns 7-8 we drop electricity prices from both the first and
second stage. Second, in columns 9-10 we include an interaction between electricity prices and
income deciles to test whether there is any heterogeneous effects of prices affecting our results.
In all cases our estimates are very similar to the main specification. In additional regressions, we
also directly control for the endogeneity of prices using an instrumental variable (IV) approach.
Table A4 reports the 2SLS results. In columns 2-3 we instrument electricity prices in the de-

11See Table 1 in Boogen et al. (2021) for a selected review.
12In developed countries urban households consume less electricity compared to rural households, who tend to

own larger and less efficient dwelling and consumer more electricity.
13We find a correlation coefficient of -0.32 between air conditioning ownership and this omitted category.
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mand equation using either ADM-1 or country fixed effects.14 This strategy is inspired by Davis
and Kilian (2011) and Barreca et al. (2016), who address potential measurement error by instru-
menting electricity prices with US census region dummies that capture geographic variation in
the costs of generating the electricity consumed by households.15 We find that price elasticity
increases in absolute value once we correct for endogeneity, suggesting that in our baseline es-
timates we are likely underestimating households’ responsiveness. Contrary, the effect of air
conditioning remains unchanged.

Wooldridge (2015) suggests that in a control function approach the correction term can be mod-
elled as any other variable. In another set of estimates (Table A3, columns 11-14) we then test the
robustness to changes in the functional form of the correction term. First, we include a squared
term of the correction term, and, second, we control for its interactions with contemporaneous
CDD. The results are similar to our main estimates. We also test for winsorizing (columns 15-16)
and trimming (columns 17-18) the sample at the 5th and 95th percentiles. Again, the results are
basically the same. Finally, we re-estimate our main specification without survey weights (Table
A3, columns 19-20). Our main findings remain robust.16

5.2 Heterogeneity

The additional electricity demand attributable to air conditioning ownership varies significantly
across income groups and countries. We model whether a household owns one or more air-
conditioning units, and how the intensity of utilization of those appliances varies with temper-
ature. A larger intensive margin response could indicate the presence of more units, higher
capacity units, and/or operation of those appliances over longer periods at a given ambient
temperature.

Across levels of income. To identify the heterogeneous effect of air conditioning across income
levels, we estimate our model using a global response function with country-specific expendi-
ture quintiles (Table A5). Panel A of Figure 3 shows that the total effect of air conditioning on
electricity consumption—i.e., the sum of partial derivatives computed at the CDD mean value—
is slightly larger for households in the first, second and in the fifth income quintiles. On aver-
age, utilization air conditioning owning households in the third- and fourth-income quintiles
add about 34 to 35% to their average annual electricity consumption, whereas households in the
first, second and fifth quintiles use 38-40% electricity. However, these average effects are not
statistically different from one other. We speculate this may be attributable to improved charac-
teristics of buildings and appliances as we move from the lowest to the middle income groups,
an effect that is compensated by patterns of air conditioning adoption and use when households
become more affluent. Richer households can afford to adopt higher quality air conditioners that
are both efficient and expensive, but they may also purchase larger capacity appliances, addi-
tional air-conditioning units, and operate them for longer periods and more frequently, with the
net effect of higher consumption. Lack of data prevents us from empirically disentangling these
contending influences. Critically, looking at these estimates in relative terms hides the striking
differences in levels among income groups. AC-owning households in the poorest quintile con-
sume, on average, 679 kWh annually for cooling. However, consumption rises to more than

14Note that this means that we exclude them from both the air conditioning and the electricity equation.
15In Supplementary information we also instrument prices using the fuel-specific shares of electricity generation

at the ADM-1 level obtained from the Global Power Plant data base. In both cases we notice that instrumenting elec-
tricity prices leads to larger elasticity to prices. However, the fuel-specific shares appears as a weak instrument once
we control for unobserved confounders at the ADM1-level. Hence, 2SLS estimates obtained using these instruments
should be only taken as suggestive of how measurement error is affecting our price elasticity.

16In Supplementary information we provide further robustness checks. For instance, we estimate our demand
equation using electricity consumption in level. The results show the same functional form for air conditioning
utilization of our main specification once we take accounts of outliers.
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800 kWh for households in the second and third quintiles, reaching 1,033 and 1,436 kWh for the
richest households.

Figure 3 Panel B illustrates how patterns of air conditioning utilization respond to temperature
across the income distribution. With the exception of middle incomes, the relationship between
cooling electricity and income generally follows an inverse U-shape, with low-income house-
holds attaining maximum utilisation at smaller heat exposures than their high-income counter-
parts, whose utilization saturates at about 1,800 CDDs. A likely reason is that poor households
can afford fewer and/or smaller-capacity units. Variation across income groups in the shape of
the response functions is thus suggestive of inequality in households’ adaptive capacity. When
exposed to ambient high temperature extremes, rich households are able to shield themselves
through large increases in spending on cooling electricity, whereas poorer households may not
have the same flexibility to ramp up electricity consumption in ways that translate into cooling.

Across countries. Tension between more efficient technologies and adaptive behaviours, on
one hand, and large cooling demands, on the other, is also evident in Figure 4. This illustrates
the declining marginal effect of air conditioning ownership on cooling electricity consumption as
we move from the poorest regions (India, Indonesia, Sub-Saharan Africa) to more developed re-
gions (Northern Europe, Argentina, Australia, Canada, Japan, USA).17 As countries with cooler
climates also tend to be more affluent, their households, on average, can afford better technolo-
gies and therefore can achieve thermal comfort with less electricity. Higher income can also be
associated with higher-quality housing—building envelopes with better thermal performance—
but larger per-household residential spaces and associated cooling demand.

Air conditioning increases average electricity consumption between 68% in Africa, 10% in Italy,
and 7% in non-European OECD countries. Countries tend to fall into three clusters: Africa
and Indonesia, where average cooling electricity consumption of AC-owning households is 50%
larger than that of households without air conditioning, and two additional groups for which
AC-driven amplification of electricity use are 25-50% and < 25%, respectively.

5.3 Air conditioning and the role of other influencing factors

Social and demographic characteristics. Our results suggest that air conditioning is the lead-
ing factor influencing households’ consumption of electricity. Figure 5 compares the magnitude
and sign of air conditioning’s effect to those of other socioeconomic and demographic drivers.
To do so, we employ a descriptive meta-analysis of the standardised coefficients obtained from
country-specific regressions.

Air conditioning ownership emerges as the single most important individual factor with a me-
dian impact of about 27% across the country-specific model coefficients, followed by total ex-
penditure, electricity prices, housing quality, household head’s education, and household size.
Heating degree days are also relevant, but they only matter in a few high latitude countries.

17To obtain Figure 4 we run country/region-specific regression. As of the low number of observations, countries
from the EPIC survey are grouped in two groups: OECD-EU (France, Netherlands, Spain, Sweden and Switzerland)
and OECD-Non EU (Australia, Canada and Japan). Similarly, we also group African countries in an unique region.
In the country-specific regressions when the most disaggregated administrative unit available in the country survey
is ADM-2, we use ADM-1 units as fixed effects. When only ADM-1 areas are available, we construct macro-region
variables to use as fixed effects. Region-specific regressions employ country-level fixed effects. Moreover, where
available, we also include an index of housing quality as a further control. The coefficient for Germany has been
averaged with the coefficient for EU countries in the EPIC survey using total population as a weight. Germany’s
very low rate of air conditioning ownership (1%) leads to coefficient of counterintuitive sign that is not significant.
In the Supplementary information we show the same graph including Germany, as well as robustness tests using
different groupings of countries. The pattern of results remains the same as described in the text.
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Air conditioning and housing tend to have a much smaller dispersion compared to socioeco-
nomic factors, such as income or household size. Air conditioning holds a prevailing role in
both OECD and non-OECD countries (Figure A2), while other factors seem to have opposite
effects depending on the region. Economic conditions has a median effect comparable to that
of air conditioning in non-OECD countries, whereas in OECD countries the effect is quite small.
The sign of urbanization is also region-specific. This finding is consistent with the previous liter-
ature, and it is likely associated with housing efficiency, size considerations as well as type and
quality of urbanization (Bhattacharjee and Reichard, 2011). For instance, Muratori (2014) finds
that in the United States the average electricity consumption of rural households is about 50%
larger than urban ones irrespective of similar household sizes. This is mostly owing to larger
housing size and less efficient construction materials and appliances efficiency. Notably, the
urbanization rate of the United States stood at about 83% in 2023, according to the United Na-
tions Population Division. Conversely, as highlighted by Agrawal et al. (2019), in a developing
country like India—where the urbanization rate stands at about 36%—, the average electricity
demand of rural households is half of the national average residential consumption. Overall,
these numbers suggest that economic development levels are determining an inverse-U shaped
relationship between urbanization and household electricity consumption, thus explaining the
large range observed in the average marginal effects of the urban driver in Figure 5. The effect of
education also exhibits a great dispersion across regions. In non-OECD countries, education lev-
els are positively related to households’ electricity consumption, while in OECD countries they
have a negative impact. This might be explained by the fact that education is related to greater
energy conservation awareness in OECD countries (Liu et al., 2022), while its correlation with
income might be more prominent in developing countries. Regarding CDDs, the strong positive
impact on air conditioning electricity consumption in higher-income countries might be a signal
of greater household expenditure capacity at the intensive margin of electricity consumption.

Other electrical appliances. To further contextualise the importance of air conditioning, we
compare its effect on electricity consumption with that of other appliances: refrigerators, televi-
sions, computers and washing machines. Appendix Tables A6-A9 report the results of adding
each of these appliances to our main specification, with and without interactions with contem-
poraneous CDDs. Controlling for other electrical appliances does not significantly alter our
estimates. The average effect of refrigerators is similar, if not larger in magnitude, to that of air
conditioning, indicating their importance for residential electricity consumption—and energy
poverty, given their high investment and operational costs. However, refrigerators’ attributable
electricity consumption does not significantly increase with temperature as does air condition-
ing.18 Overall, the presence of these other appliances increases average residential electricity
demand, but not its sensitivity to temperature. In a global warming context this result has im-
portant policy implications, as we go on to demonstrate.

5.4 Mid-century projections of air conditioning prevalence and utilization

In an advance over prior empirical climate impact studies, we project future air conditioning
prevalence and residential space cooling electricity around 2050 by combining our fitted first
and second stage regressions (Table 3, column 4) with estimates of future climate and weather
(long-run and contemporaneous CDDs and HDDs), income (a proxy for total expenditure), ur-
banization, and demographic characteristics (including education and age of household head)
under different scenarios. Our joint estimation of the interacting intensive and extensive mar-
gins facilitates projections of electricity use for space cooling that account for climate-driven
increases in the diffusion of air conditioning in conjunction with weather-driven increases in
utilization intensity.

18Such an interaction occurs only for washing machines, but its effect is small, and noisy.
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As detailed in the Appendix, we collect data on changes in temperature exposures from global
climate model (GCM) simulations, and changes in income, population and demographic vari-
ables from various sources, for two shared socioeconomic pathway (SSP) scenarios, the moderate-
warming SSP 245 and high-warming SSP585 pathways (O’Neill et al., 2016; Fricko et al., 2017;
Kriegler et al., 2017). Table A10 summarizes the evolution of the main drivers used in the pro-
jections of both extensive and intensive margin.

We find that air conditioning ownership will grow significantly over the next thirty years, in-
creasing from the sample average of 28% in 2020 to 41-55% in 2050 under moderate and in-
tense warming, respectively (Table 4). Country-specific results align with previous estimates
(Pavanello et al., 2021; Davis et al., 2021). Substantial air conditioning utilization is expected in
most high-income countries with warm regions such as Italy, United States and Non-EU OECD
(Australia, Canada and Japan). Middle and lower-income countries projected to experience
faster income growth will exhibit the largest relative increases in air conditioning penetration
(e.g. China, India, Indonesia). However, prevailing disparities are likely to persist: air condi-
tioning penetration in African countries (10-15%) and Pakistan (29-41%) in particular falls short
of 50% households, suggesting that substantial numbers of people will remain without access to
cooling. Countries with cool climates (e.g. northern Europe) or substantial climatic heterogene-
ity (e.g., Mexico) see rates of increase of air conditioning that are more moderate.

Diffusion of air conditioning only partly explains future cooling electricity demand growth. The
intensity of air conditioning utilization is proportional to households’ CDD exposure, income
availability and demographic characteristics. Moreover, countries’ aggregate cooling needs are
determined by the size of their populations. Consider, for example, Italy and India. While Italy’s
projected 2050 air conditioning prevalence in is nearly the double that of India, both the pop-
ulation and the estimated per capita electricity use for space cooling in India are much larger,
leading to higher overall national demand.

Coincident temperature, economic and demographic trends lead to increases in cooling elec-
tricity consumption that are likely to be concentrated in developing countries. For instance,
Indonesia’s annual cooling electricity consumption would grow from 6.4 TWh to 28-55 TWh,
while India could expect a five-fold increase in a SSP 245 scenario—consistently with previous
projections, e.g., Abhyankar et al. (2017). Although not directly comparable due to differences
in geographical coverage, our projections point in the same direction as, and are of comparable
magnitude to, the IEA’s Future of Cooling report (IEA, 2018).19

Finally, it is worth noting that projected changes in cooling electricity expenditures reflect trends
that simultaneously influence adjustments at the extensive and intensive margins. The focus of
prior studies has been on exploiting trends in drivers for which projections that the integrated
assessment literature has made readily available (temperature, income, population). However,
Figure 5 shows that other socio-demographic drivers substantially influence both margins of
adaptation. Indeed, projections based only on future changes in temperature and expenditures
yield systematically lower air conditioning penetration rates and cooling electricity consump-
tion levels (Figure A4)—a pattern that is consistent across the global pooled model (panels A
and B) as well as individual regions (panels C and D). Figure A5 decomposes the influence of the
various factors on household electricity consumption in both current and future periods, con-
firming the important role of socio-demographic drivers in shaping future electricity demand in
emerging economies.

19In the baseline scenario IEA estimates a threefold growth of global energy use for cooling in the residential sector
by 2050.
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6 Discussion

In this section, we examine the potential consequences of households’ adaptation to rising tem-
peratures through increased air conditioning use. First, we assess the impact on household elec-
tricity expenditures, addressing both immediate budgetary effects and projected future costs.
In doing so, we identify an often-overlooked aspect of energy poverty: ’cooling poverty’. Fur-
thermore, we investigate the role of renewable energy, particularly solar power, in enhancing
energy security and making cooling more affordable for households. Second, we present a back-
of-the-envelope calculation to estimate the potential strain on electricity supply systems driven
by the rise in cooling demand. Finally, we consider the broader climate policy implications by
quantifying the additional CO2 emissions associated with this demand surge and estimating the
resulting social costs of these emissions.

6.1 Implications for household expenditures

Current period. When cooling electricity consumption is translated into additional expendi-
ture, the cost burden incurred by air conditioning utilization is larger for poor households. For
example, an average Indonesian household allocates 1.6% of its expenditure to electricity pur-
chases, while the corresponding figure for an average American household is 3.5%. A more than
66% increase in electricity consumption for the Indonesian household is certainly more difficult
to afford compared to the 29% increase for the American one.

To highlight the budgetary implications for AC-owning households, we examine the cost of elec-
tricity associated with the operation of air conditioning as share of total household expenditure
as a monetary measure of cooling poverty. We predict cooling electricity quantities using our
fitted main empirical specification (Table 3, column 4) and multiply the result by our estimated
electricity prices. Figure 6 shows that in emerging economies such as Pakistan and China, poor
households who own air-conditioning units allocate more than 5% of their total expenditure to
cooling, with shares above 3% among the lowest quintile found also in Africa, Argentina, In-
dia, and Mexico. The budgetary consequences of AC-driven electricity demand amplification
are regressive. Expenditure shares of both total and cooling-related electricity both decline with
household income, a pattern holds across countries and regions, albeit with steeper declines in
some areas. In the United States, China, Brazil, India, Pakistan, poor households’ cooling elec-
tricity expenditure share is more than twice as large as that of their rich counterparts.

Figure A3 illustrates the electricity share of total expenditure, stratifying households by air con-
ditioning ownership. Cooling electricity accounts for a large share of total electricity expen-
diture, and households with air conditioning tend to spend much more on electricity. In low-
income households in developing countries, the median household with air conditioning spends
twice as much as the median household. In low air-conditioning penetration areas (e.g. Africa,
Brazil, Indonesia, India, Mexico, Pakistan), cooling electricity’s fraction of expenditure can be as
large as the total electricity expenditure share of the median household. Conversely, in high air
conditioning penetration areas (e.g., Argentina, China, Italy, the US), a significant difference is
observed between the median values of air conditioning electricity shares and total electricity
shares. Importantly, in all countries the difference in the share of electricity expenditure between
adopters and non-adopters of air conditioning diminishes as income grows.

Future residential electricity expenditures. Our projections of future electricity use highlight
a critical question: as the climate warms, will growth in the demand for cooling translate into
increasing pressure on household budgets? Unfortunately, a definitive answer is elusive. To
quantify the fraction of total expenditure that households will allocate to power consumption, it
is necessary to make assumptions about the future distribution of incomes and the positions of
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the surveyed households within it, as well as residential electricity prices in the future. Elaborat-
ing these factors in a consistent fashion requires an integrated assessment research framework
that is well beyond the scope of the present study. Our fallback is the more straightforward ap-
proach of a simple ceteris paribus calculation of the expenditure burden associated with changes
in electricity consumption, holding constant the prices and household incomes at the levels pre-
vailing today.

First, Figure 7 shows the shifts in the region-specific distributions of cooling electricity expendi-
ture (in $2011 PPP) between 2020 and 2050 with constant prices.20 Dashed vertical lines indicate
the mean cooling electricity expenditures in the different scenarios. This is possible thanks to
the large within- and across-country heterogeneity of our pooled data set and household-level
future projections. The flattening of the density peaks when shifting from 2020 (gray) to 2050
(orange and red) reflects increasing air conditioning penetration, including rising ownership
among low-income households, which counterbalances the rightward shift in the mean air con-
ditioning electricity consumption. Interestingly, in Africa as households with total expenditure
less than the country-level mean gain access to air conditioning, national average cooling elec-
tricity consumption declines, even as the absolute number of AC-owning households grows.
By contrast, other countries’ distributions exhibit pronounced rightward shifts, indicating rising
air conditioning adoption concentrated among relatively high-expenditure households, whose
increased electricity consumption drives growth in mean cooling electricity expenditures.

As a complementary exercise, we calculate how the foregoing shifts translate to ceteris paribus
changes in households’ cooling electricity share of total expenditure, when both electricity prices
and total expenditure are held constant at current levels. The result, shown in Figure A6, is in-
creased pressure on household budgets in all countries and regions assessed, in conjunction with
a widening of the distribution of expenditure shares. In China, India and Pakistan, households
above the 75th percentile of the expenditure distribution could spend more than 5% of their bud-
get on cooling. Nevertheless, it bears emphasizing that the precise future implications depend
on the “horse race” among three factors that the present analysis is unable to completely capture:
in addition to the growth in air conditioning penetration and cooling electricity consumption
with warming-driven temperature increases, the effects of demographic and economic develop-
ment trends on the future distribution of households’ total expenditures, and shifts in electricity
generation technologies and the structure of energy markets that determine future residential
power prices.

Potential mitigating effects of solar power generation. Renewable electricity generation has
the potential to moderate both the consumption and cost of the additional electricity associated
with operating air conditioners. In developing countries where populations face limited access
to power grids, unreliable power supplies, and/or high electricity prices, alternative power gen-
eration technologies such as PV have the potential to make air conditioning technologically and
economically feasible (Falchetta and Mistry, 2021). Our study setting provides an opportunity
to quantify this potential. To do so, we augment our baseline regression with a measure of po-
tential solar electricity generation at the sub-national level, and interact the latter with both air
conditioning ownership and electricity prices. Our measure is constructed as the product of
PV generation potential and installed solar power capacity, which proxies for the kWh of PV
electricity generated in the sub-national area assuming a typical utility-scale PV system.21 This
calculation reflects the fact that many high-insolation areas with large solar generation potential
currently have low installed generation capacity (e.g., African countries), while comparatively
low-potential areas have a high installed capacity (e.g., Germany). To facilitate interpretation,

20Households that we project do not own air conditioning in the future are excluded from the analysis in Figure 7.
21PV electricity generation (kWh) = PV potential output (kWh/kW peak) × (PV installed capacity (MW peak) ×

1000).
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we specify our covariate as a “high PV generation” dummy variable that identifies locations
with higher-than-median generation potential, which is positively correlated with the adoption
of air conditioning (Table A14).

Table 5 reports our results. Compared to their lower-than-median counterparts, households in
areas with higher-than-median PV generation are associated, on average, with 25% less cool-
ing electricity—i.e., 0.112/0.456. This finding is in line with recent results that demonstrate
that PV adoption reduces households’ electricity consumption responses to high temperatures
in Italy (Colelli et al., 2023a).22 The coefficient on the interaction between greater-than-median
PV generation and electricity prices is negative but not significant. However, the weakly sig-
nificant coefficient on the interaction between electricity prices and continuous measures of PV
capacity or generation (Table A12 and Table A13) suggests that residential electricity demand
tends to be more price-elastic in high solar generation regions. We speculate that, to the extent
that our proxy variable reflects households being more likely to operate their own rooftop PV
systems, this result could indicate substitution of own-supplied PV generation for mains elec-
tricity supply during daylight hours. Supply-switching is consistent with Colelli et al.’s (2023a)
finding that PV adoption reduces exposure to electricity price shocks and increases the price-
responsiveness of electricity demand, particularly during warm seasons with more daylight
hours. Notwithstanding these indications of PV generation’s potential to reduce the burden
associated with air conditioning utilization, and mitigate the energy security and affordability
challenges facing adapting households, the precise mechanisms are unclear, and will likely re-
main so pending the availability of household-level data on distributed generation.

6.2 Implications for electricity supply systems

Our estimates reveal that, across our sample of 25 countries, cooling electricity consumption
will grow by a factor of two to three by 2050, reaching about 1,000-1,400 TWh per year—in line
with India’s total final electricity consumption in 2020. As previously highlighted (Colelli et al.,
2022, 2023b; Davis and Gertler, 2015), this surge in electricity consumption for climate adap-
tation has enormous implications for generation and transmission capacity planning (Sherman
et al., 2022), operational stability of electricity grids (Auffhammer et al., 2017), and the costs of
achieving global decarbonization goals (Colelli et al., 2022).

We illustrate implications for electricity supplies using a simple back-of-the-envelope engineer-
ing calculation for India. Conservatively assuming constant utilization over the course of a six-
hour average daily air conditioning run time (Ramapragada et al., 2022), and constant average
utilization of air conditioning over months of the year, annual cooling electricity consumption
will grow from nearly 40 TWh to about 200-300 TWh per year in 2050. The latter corresponds to
a 75-120 GW increase in peak supply (generation and/or storage capacity) to satisfy AC-driven
amplification in hourly peak electricity demand.23

Considering that India’s current installed capacity is about 420 GW, accommodating an average
1% per year rise in peak capacity demand—on top of general increases due to population and
income growth—will have important repercussions for power system planning and operations.
The ultimate effects of peak demand amplification on the power grid will depend on how the

22In the Appendix, the effect of the interaction between the potential output measure and air conditioning is nega-
tive but not significantly different from zero (Table A11). We obtain similar results interacting air conditioning with
PV capacity, as well as with a continuous measure of PV generation (Table A12 and Table A13). These latter inter-
actions become highly significant when we relax assumptions about unobserved heterogeneity at the country level
(see Supplementary information).

23260 TWh higher annual cooling electricity consumption × 1,000 ÷ (365 days × 6 hours/day) = 119 GW. We
obtain the same result under alternative assumptions that half of cooling electricity consumption is concentrated in
summer months with an average utilization of 12 hours per day (Colelli et al., 2023b; Ramapragada et al., 2022).
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additional electricity will be generated (Colelli et al., 2023a). The previous section’s results sug-
gest that future penetration of distributed PV generation could be an important moderator of
both peak and total electricity system load. Additionally, policies and investments to improve
the efficiency of the installed base of cooling appliances are likely to be an important comple-
mentary demand-side strategy (IEA, 2018; Ramapragada et al., 2022). The efficacy of the latter
will depend on technological progress in manufacturing low-cost, high-efficiency air condition-
ing units, as well as the diffusion of regulations to implement and strengthen minimum energy
performance standards for cooling appliances—especially in developing countries.24

Notwithstanding, projected increases in global cooling electricity use are likely to be at least par-
tially offset by declines in the consumption of electricity and multiple fossil fuels for heating as
cool-season temperatures rise in the future (Van Ruijven et al., 2019; Rode et al., 2021). This com-
pensating effect will moderate total additional electricity consumption in temperate countries,
but not in the tropics (Romitti and Sue Wing, 2022), and is unlikely to attenuate the pressure on
generation and transmission capacity as cooling adaptation shifts peak power demand to the
hottest days of the year.

6.3 Implications for emissions and climate policy

The projected surge in cooling electricity demand suggests that climate adaptation could in-
crease power generation-related CO2 emissions, posing a challenge for achieving decarboniza-
tion goals (Colelli et al., 2023b). We estimate that electricity demand amplification could increase
CO2 emissions from 365 Mt today to 692-948 Mt by mid-century (Table A15), an amount exceed-
ing France’s current national emissions. The bulk of these additional emissions would come
from developing countries such as China, India, and Indonesia that are projected to experience
rapid increases in air conditioning adoption. To quantify the associated “social cost of residen-
tial cooling energy”, we use the central value of the social cost of carbon of 185 $/tCO2 (Rennert
et al., 2022), which translates into a total cost of $128-175 billion in 2050.

Effective mitigation of emissions from cooling will be key, in addition to improvements in end-
use appliance efficiency, rapid decarbonization of the power sector—especially in countries with
high current or projected air conditioning utilization and fossil fuel-intensive electricity gener-
ation systems (e.g., China, India, Indonesia and USA). While previous studies provided evi-
dence for the moderating effects of warming winter temperatures on electricity demand ampli-
fication, likely resulting in an offset of aggregate power consumption (Rode et al., 2021), this
counterbalancing is only likely to be observed in temperate countries. Contrary, regions in
warmer climates—and, coincidentally, also low income—will likely experience a net increase
in temperature-related energy use. Altogether, this implies that the bulk of the twin burdens of
the pecuniary costs of expanding electricity supplies, and the social costs of the additional CO2
emitted in the process, will fall most heavily on populations with the least capacity to adapt
(Gazzotti et al., 2021).

7 Conclusion

This paper has provided a global-scale assessment of households’ adaptation to heat through
coordinated extensive-margin adoption of air conditioning and intensive-margin utilization of
air conditioning via consumption of electricity for cooling. We estimate the long-run effects
of temperature on electricity consumption via a discrete-continuous choice econometric frame-
work applied to a novel dataset of household survey microdata pooled across 25 countries. We

24Clean Cooling Collaborative (2024). Mid-Program Impact Report (2022-2024): Setting a Course for Efficient,
Climate-Friendly Cooling for All. https://www.cleancoolingcollaborative.org/wp-content/uploads/2024/08/
CCC_Mid-Program-Impact-Report.pdf
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also project the potential household-level implications of future cooling uptake and electricity
consumption circa 2050 under multiple socioeconomic and climate change scenarios, consider-
ing a broad array of drivers at national and sub-national scales.

Our main finding is that air conditioning ownership is a leading determinant of residential elec-
tricity demand, associated with an average increase of 36% in household electricity consump-
tion. We also shed light on the considerable variation in this response, providing insight into
the mediating effects of key drivers—weather, income, education, age, and urbanization. Fu-
ture shifts in income, social and demographic drivers, and co-occurring climate warming will
induce large increases air conditioning adoption and concomitant amplification of electricity
consumption for cooling by 2050. This phenomenon will likely be associated with multiple
underappreciated policy challenges. On the supply side, the need to expand electric power
generation and transmission capacity to meet this higher demand will have important impli-
cations for infrastructure planning, growth in global GHG emissions, and potential trade-offs
between mitigating, and adapting to, climate change. We provide suggestive indications that
distributed solar generation could partially alleviate this trade-off through supply switching at
the household level. On the demand side, we demonstrate that electricity expenditure burden
of cooling is regressive, revealing current and future patterns of climate adaptation inequalities
within and across regions. Although the total number of households without air conditioning
will decline, leading to a general increase in heat adaptation capacity, especially in developing
countries a substantial fraction of households that adopt air conditioning will be low income,
and will face significant expenditure burdens to attain thermal comfort, raising the specter of
“cooling poverty”.

To conclude, we briefly discuss some limitations of our work that future research can address.
A first caveat is that our results are based on cross-sectional estimates. While we correct for the
endogeneity of air conditioning, potential omitted variable bias remains a concern, especially in
our second-stage regression which is unable to fully exploit quasi-random variation in weather
realization. Unfortunately little can be done to address this issue: although micro-panel data
would be ideal, household expenditure surveys that record both air conditioning and energy
use are almost universally cross-sectional, which constrains the data available for multi-country
analysis. As additional survey waves, or new longitudinal micro datasets, become available
across the world, the ability to exploit the associated temporal variation has the potential to
strengthen our inference about the relative importance of climate, weather, economic, demo-
graphic and contextual influences on air conditioning adoption and utilization. Undertaking
these refinements is high on our research agenda.

Second, price elasticity increases in absolute value once we correct for endogeneity, suggesting
that in the baseline we are likely underestimating households’ responsiveness to prices. Even
though our projections hold prices constant, the value of elasticity still has implications for how
changes in prices—a potential policy target—could affect future cooling electricity consumption,
GHG emissions, and expenditure burden and heat adaptation differentials across households in
different income groups.

Last but not least, our dataset entirely lacks information on the energy efficiency and cooling
capacity of the air conditioning units owned by households. Consequently, embedded in our
projections is the implicit assumption that the level of cooling technology will remain static into
the future, although in the coming decades there will almost surely be technological progress in
air conditioning, and differential uptake by households. A key challenge for future research is
quantifying innovation in air conditioning, and implications for future patterns of adoption and
utilization for cooling.
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Deschênes, O. and Greenstone, M. (2011). Climate change, mortality, and adaptation: Evidence
from annual fluctuations in weather in the us. American Economic Journal: Applied Economics,
3(4):152–85.

Dubin, J. A. and McFadden, D. L. (1984). An econometric analysis of residential electric appli-
ance holdings and consumption. Econometrica: Journal of the Econometric Society, pages 345–362.

Dyer, O. (2022). Climate change is outpacing efforts to adapt, warns intergovernmental panel.

Falchetta, G., Cian, E. D., Pavanello, F., and Wing, I. S. (2024). Inequalities in global residential
cooling energy use to 2050. Nature Communications, 15(1):7874.

Falchetta, G. and Mistry, M. N. (2021). The role of residential air circulation and cooling demand
for electrification planning: Implications of climate change in sub-saharan africa. Energy Eco-
nomics, 99:105307.

Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp, P., Strubegger, M.,
Valin, H., Amann, M., et al. (2017). The marker quantification of the shared socioeconomic
pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change,
42:251–267.

Gao, J. (2020). Global 1-km downscaled population base year and projection grids based on the
shared socioeconomic pathways, revision 01. NASA Socioeconomic Data and Applications Center
(SEDAC).

Gao, J. and Pesaresi, M. (2021). Downscaling ssp-consistent global spatial urban land projections
from 1/8-degree to 1-km resolution 2000–2100. Scientific Data, 8(1):1–9.

22



Gazzotti, P., Emmerling, J., Marangoni, G., Castelletti, A., Wijst, K.-I. v. d., Hof, A., and Tavoni,
M. (2021). Persistent inequality in economically optimal climate policies. Nature Communica-
tions, 12(1):3421.

Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W., and Zelinka, M. (2022).
Climate simulations: Recognize the ‘hot model’problem.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J.,
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Tables and Figures

Table 1: Household survey microdata sources and details

Country Year of wave analysed Region Primary source N◦Households

Canada 2011 North America EPIC 481
United States of America 2003-2021 North America AHS 85,236

Mexico 2018 Central America INEGI 62,267
Brazil 2017 / 2018 Southern America IBGE 46,734

Argentina 2017 / 2018 Southern America ENGHO 19,506
Sweden 2011 Europe EPIC 448

Switzerland 2011 Europe EPIC 199
Netherlands 2011 Europe EPIC 447

France 2011 Europe EPIC 667
Germany 2019 Europe SOEP 5,299

Spain 2011 Europe EPIC 515
Italy 2019 Europe HBS 17,244

Nigeria 2019 Africa GHS 1,597
Ghana 2017 Africa GLSS 6,812
Kenya 2015 / 2016 Africa IHBS 5,863

Burkina Faso 2014 Africa EMC 1,980
Niger 2014 Africa ECVMA 858

Malawi 2019 / 2020 Africa IHS 1,1142
Tanzania 2017 / 2018 Africa HBS 9,193
Pakistan 2018 / 2019 Central Asia LSM-IHS 19,506

India 2019 Central Asia CHPS 167,238
China 2014 Eastern Asia CFPS 11,245
Japan 2011 Eastern Asia EPIC 247

Indonesia 2017 Eastern Asia SUSENAS 224,103
Australia 2011 Oceania EPIC 527

Total 692,718
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Table 2: Descriptive statistics

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 2439.24 3942.46 258.57 663.13 1287.55 2474.23 5278.37
Air Conditioning (Yes = 1) 0.26 0.44

Climate and weather

CDD (100s) 15.88 10.79 2.89 6.21 12.89 26.92 30.04
CDD (100s) 16.78 11.00 3.33 7.26 14.68 27.68 31.29
HDD (100s) 11.31 13.53 0.00 0.05 4.46 19.15 29.45

Socio-economic and demographic

Total Expenditure ($2011 PPP) 16358.92 35464.50 1324.27 3557.33 6628.43 14635.63 39995.22
Electricity Price ($2011 PPP / kWh) 0.19 0.14 0.10 0.12 0.15 0.23 0.33
Urbanisation Share 0.08 0.12 0.00 0.01 0.03 0.10 0.23
Home Ownership (Yes = 1) 0.82 0.38
Household Size 3.91 2.27 2.00 2.00 4.00 5.00 6.00
No Education (Yes = 1) 0.27 0.44
Primary Education (Yes = 1) 0.28 0.45
Secondary Education (Yes = 1) 0.31 0.46
Post Education (Yes = 1) 0.14 0.35
Age of Household Head 48.82 15.18 29.00 38.00 48.00 59.00 69.00
Female Household Head (Yes = 1) 0.32 0.47

Other electrical appliances

Refrigerator (Yes = 1) 0.71 0.45
Television (Yes = 1) 0.85 0.36
Computer (Yes = 1) 0.43 0.49
Washing Machine (Yes = 1) 0.53 0.50

Observations 692718

Notes: Descriptive statistics are computed survey weights.
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Table 3: The effect of air conditioning on residential electricity consumption

OLS OLS DMF DMF
(1) (2) (3) (4)

AC 0.597∗∗∗ 0.377∗∗∗ 0.361∗∗∗ 0.028
(0.032) (0.029) (0.031) (0.062)

AC × CDD 0.038∗∗∗

(0.010)
AC × CDD2 −0.001∗∗

(0.000)

Controls NO YES YES YES
Correction Term NO NO YES YES
ADM-1 FE YES YES YES YES

R2 0.670 0.729 0.729 0.731
Mean Outcome (kWh) 2495.943 2495.943 2495.943 2495.943
Countries 25 25 25 25
Observations 682727 682727 682727 682727

Notes: Dependent variable: logarithm of electricity consumption (kWh). Full results
are available in Table A1. For DMF Columns the first stage is shown in Table A2,
columns 3-4. ”Controls” include natural logarithm of electricity price, and weather
and socio-economic and demographic variables. Regressions are conducted using
survey weights. Standard errors are clustered at the ADM1 level; *p < 0.10, **p <
0.05, ***p < 0.01.
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Table 4: Projections of residential air conditioning adoption and use

AC penetr.rate (%) Per cap. AC electr. (avg. kWh/hh/yr) Total AC electr. (TWh)

2020 SSP245 (2050) SSP585 (2050) 2020 SSP245 (2050) SSP585 (2050) 2020 SSP245 (2050) SSP585 (2050)

Country Mean Mean Mean Mean Mean Mean Mean Mean Mean

Pooled 27.5 40.7 54.6 1610 1869.4 2069.4 494.5 975.8 1392.6

Africa 6.2 9.5 14.5 391.1 303.4 251.4 1.5 3.2 3.5
Argentina 61.3 82.2 88.7 532.4 719.5 856.1 4.1 8.6 9.9
Brazil 24.8 44.8 63.5 1311.8 1418.1 1649.2 20.9 45 68.1
China 46.8 72 81.7 1001.2 1461 1778.6 165.8 341.5 457.3
Indonesia 11.3 35.2 59.8 1058.8 1332 1639.1 6.4 28 54.7
India 9.7 33.6 52.3 1216.2 1419.3 1547 38.5 196.6 297.3
Italy 57.7 81.5 88.5 521.9 705.9 834.5 6.6 12.3 18.2
Mexico 22.2 34.8 43.4 908.9 1052.3 1124.7 6.6 14.2 16
OECD-EU 34.9 47.2 54.2 849.4 1211.3 1321.4 13.6 29.2 42.7
OECD-NonEU 82 88 89.8 923.4 1254.9 1608.9 42.7 63.4 97.5
Pakistan 16.8 29.4 41.3 1356 1420 1443.1 7.3 18.9 22.6
United States 92.3 96.8 97.7 2680 3304.6 3679.8 304.4 466.2 619.4
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Table 5: The role of solar power generation in residential electricity demand

DMF DMF DMF
(1) (2) (3)

AC 0.361∗∗∗ 0.456∗∗∗ 0.361∗∗∗

(0.031) (0.053) (0.031)
1(PV Gen. > Median) 0.005 0.014 −0.080

(0.022) (0.023) (0.093)
AC × 1(PV Gen. > Median) −0.112∗

(0.059)
Log(P) −0.392∗∗∗ −0.396∗∗∗ −0.376∗∗∗

(0.040) (0.039) (0.035)
Log(P) × 1(PV Gen. > Median) −0.045

(0.043)

Controls YES YES YES
Correction Term YES YES YES
ADM-1 FE YES YES YES

R2 0.729 0.730 0.730
Mean Outcome (kWh) 2495.943 2495.943 2495.943
Countries 25 25 25
Observations 682727 682727 682727

Notes: Dependent variable: logarithm of electricity consumption (kWh). ”Controls”
include weather and socio-economic and demographic variables. Regressions are con-
ducted using survey weights. Standard errors are clustered at the ADM-1 level in
parentheses; *p < 0.10, **p < 0.05, ***p < 0.01.
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Figure 1: Panel A: Air conditioning prevalence; Panel B: Median household electricity consump-
tion; Panel C: Median historical CDDs; Panel D: Median household total expenditure, by coun-
try.
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Figure 2: Marginal effects of air conditioning ownership on household electricity consumption
for different level of cooling degree days. Confidence intervals: statistical significance level
at 95%. Red dashed line: pooled estimate (Table 3, column 3). Background: distribution of
population-weighted cooling degree days.
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Figure 3: Marginal effects of air conditioning ownership on household electricity consumption,
by country-specific expenditure quintile: (A) Total effects; (B) Effects at different CDD levels.
Confidence intervals: statistical significance level at 95%. Red dashed line: pooled estimate
(Table 3, column 3).
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Figure 4: Marginal effects of air conditioning ownership on electricity consumption by country.
Estimates are obtained from country-specific models. Countries are ordered based on their total
expenditure per capita. Confidence intervals depict statistical significance level at 95%.
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Figure 5: Boxplot of the marginal effects of the drivers of household electricity consumption.
Estimates are based on country-specific average marginal effects calculated from standardised
regression coefficients. Note: only coefficients with p < 0.05 are included.
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Figure 6: Distribution of estimated household electricity consumption for air conditioning, strat-
ified by quintile of total household electricity consumption in 2020. Note: only households own-
ing air conditioning are included.
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Figure 7: Distribution of households’ expenditure for air conditioning electricity (2011 USD
PPP), by country/region and scenario.
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Appendix

A.1 Method and data for projections

For each scenario we obtain downscaled and bias-corrected daily temperatures on a 0.25◦ grid
simulated by global climate models (GCMs) under the Coupled Model Intercomparison Project,
Phase VI experiment from the NASA Earth Exchange Global Daily Downscaled Projections,
NEX-GDDP CMIP6 data set (Thrasher et al., 2022).25 We extract daily temperature series for 14
GCMs, and use them to calculate grid cell-wise annual CDDs and HDDs for the 1995-2014 his-
torical epoch and the 2041-2060 mid-century epoch under the two SSP scenarios. The results are
then spatially aggregated to match the finest levels of geographic disaggregation in the house-
hold surveys.

To project CDDs and HDDs for each GCM, g, administrative unit, i, and climate scenario, s,
we first calculate the difference between the future CDDs/HDDs in year t (2041-2060) and the
historical average value for the historical period of the CMIP6 experiment (1995-2014). E.g., for
CDDs:

∆gis = Et

[
CDDCMIP6

gist − CDDCMIP6
gis

]
The resulting mean shift, or “climate delta”, is then added to the ERA5 historical CDDs at the
corresponding administrative unit, yielding projected future CDD and HDD exposures under
different GCM-scenario combinations for each household in our survey dataset, e.g.:

C̃DDgis = CDDi + ∆gis, C̃DDgis = CDDi + ∆gis

Future household socioeconomic and demographic characteristics are imputed based on grid-
ded and national-scale projections. Annual per capita GDP growth rates are computed from the
gridded projections of real GDP and population consistent with the SSP scenarios (Murakami
et al., 2021; Gao, 2020). We extract GDP and population at finest levels of geographic disag-
gregation in the surveys and calculate scenario- and location-specific growth rates of GDP per
capita between 2020 and 2050. Households located within a given administrative unit are then
assumed to experience a growth in their total expenditure level equal to the average growth
rate computed for that unit. Gridded population growth rates consistent with the SSP scenarios
(Jones and O’Neill, 2016) are used to project the growth in the number of households for each
administrative unit in each country, and, similarly, gridded projections of urbanization by SSP
are used to update the urban shares (Gao and Pesaresi, 2021).

Changes in household age, gender, and education levels across SSP scenarios are computed from
country-level demographic projections (Samir and Lutz, 2017). Projecting these drivers poses a
challenge, especially in the case of binary and multi-level factor variables. Projected age and sex
shares consistent with the SSPs were calculated and mapped directly to the corresponding sur-
vey variables. For education levels, we assumed that the level of educational attainment of each
head-of-household in the sample shifts in such a way as to match the growth of the encompass-
ing national population corresponding to each education level. For housing quality indicators,
historical trends in the housing indices are extrapolated into the future for countries with multi-
ple survey waves available and where these variables are available.

We project future air conditioning prevalence and cooling electricity consumption across coun-
tries exploiting the fitted discrete-continuous global model specification (Column 4 in Table 3).
On the other hand, the country-specific models are used to conduct decomposition analysis of
historical and projected household electricity demand, as presented in Figure A5. To predict

25NEX-GDDP CMIP6 includes data for 32 GCMs, from which we exclude “hot” models that exhibit anomalously
large equilibrium climate sensitivities and transient climate responses (Hausfather et al., 2022).
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future air conditioning prevalence we use the fitted first-stage regression updated with future
values of climatic CDDs and HDDs, expenditure, age, education, urbanization, and housing
quality (indicated below using a tilde). This procedure yields a predicted household-level prob-
ability of air conditioning, and a household is assumed to own air conditioning if the probability
exceeds or is equal to 50%. To predict future cooling electricity consumption we use the second
stage regression updated with future values of contemporaneous CDDs and HDDs, expendi-
ture, age, education, urbanization, and housing quality (where available), for households that
are predicted to both own and lack air conditioning. The algorithm uses eqs. (7)-(10) as follows:

First, we estimate the predicted probability of air conditioning ownership for a given household
in a given future year and scenario based on:

π̃h = γ̂1 f (C̃DDi(h)) + γ̂2Ỹh + γ̂3 f (C̃DDi(h))× Ỹh + γ̂4 f (C̃DDi(h))

+ γ̂5Ph + γ̂6X̃h + ψ̂
′Z̃h + µ̂A(h)

Then, we transform the predicted probability back into a binary variable of expected air condi-
tioning ownership using a probability of 0.5 as a threshold:

ÃCh = 0 + 1 × (π̃h ≥ 0.5)

We also update the correction term based on the predicted probability:

ζ̃h =

{
(1−π̃h) ln(1−π̃h)

π̃h
+ ln π̃h if ÃCh = 1

π̃h ln π̃h
1−π̃h

+ ln(1 − π̃h) Otherwise

We proceed estimating the quantity of electricity consumed by each given household in a given
future year and scenario based on estimating two times the following equation. The first esti-
mate is a function of the predicted, binary-transformed air conditioning status, as well as of the
other drivers, while in the second estimate an assumption of no AC ownership is imposed:

Q̃h = β̂1 ÃCh + β̂2ÃCh × f (C̃DDi(h)) + β̂3 f (C̃DDi(h))

+ β̂4Ỹh + β̂5Ph + χ̂′Z̃h + λ̂ζ̃h + ν̂A(h)

Hence, we conclude subtracting the two conditional predictions, after taking their exponential,
to obtain the estimated quantity of electricity consumed for air conditioning:

Q̃AC
h(ÃCh=1)

= exp(Q̃h(ÃCh=1)|ÃC = 1)− exp(Q̃h(ÃCh=1)|ÃC = 0)

To scale up household-level results to national and global cooling electricity consumption pro-
jections, household weights, Wh, which ensure that each survey is representative of the popula-
tion of its encompassing country, also updated for future periods and scenarios. Each weight is
scaled according to the 2020-2050 rate of change of the population, Γis, in the most disaggregated
administrative unit in which the household resides:

W̃h = Wh × (1 + Γi(h)s)

This approach has the important drawback that it does not consider potential changes in the
joint distribution of households’ socio-economic characteristics. In particular, we do not predict
how a given household’s characteristics could shift, causing it to change the type of households
it might represent in the future. We only project whether it might represent a larger or smaller
number of the type of households that it currently represents.
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A.2 Additional tables and figures

Table A1: The effect of air-conditioning on residential electricity consumption — Full Table

OLS OLS DMF DMF
(1) (2) (3) (4)

AC 0.597∗∗∗ 0.377∗∗∗ 0.361∗∗∗ 0.028
(0.032) (0.029) (0.031) (0.062)

AC × CDD 0.038∗∗∗

(0.010)
AC × CDD2 −0.001∗∗

(0.000)
CDD 0.055∗∗∗ 0.054∗∗∗ 0.046∗∗∗

(0.013) (0.013) (0.013)
CDD2 −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗

(0.000) (0.000) (0.000)
HDD 0.029∗∗ 0.029∗∗ 0.027∗

(0.014) (0.014) (0.014)
HDD2 −0.000 −0.000 −0.000

(0.000) (0.000) (0.000)
Log(Exp) 0.322∗∗∗ 0.322∗∗∗ 0.320∗∗∗

(0.028) (0.028) (0.029)
Log(P) −0.387∗∗∗ −0.392∗∗∗ −0.405∗∗∗

(0.039) (0.040) (0.040)
Urbanisation (%) 0.168 0.163 0.109

(0.238) (0.235) (0.231)
House Ownership (Yes = 1) 0.049∗∗∗ 0.049∗∗∗ 0.053∗∗∗

(0.014) (0.014) (0.014)
Household Size 0.036∗∗∗ 0.036∗∗∗ 0.037∗∗∗

(0.013) (0.013) (0.013)
Primary Edu. 0.104∗∗∗ 0.101∗∗∗ 0.097∗∗∗

(0.014) (0.014) (0.014)
Secondary Edu. 0.160∗∗∗ 0.156∗∗∗ 0.149∗∗∗

(0.019) (0.019) (0.019)
Post Edu. 0.159∗∗∗ 0.154∗∗∗ 0.136∗∗∗

(0.024) (0.024) (0.024)
Age (Head) 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.001) (0.001) (0.001)
Female (Yes = 1) 0.008 0.008 0.009

(0.008) (0.008) (0.008)
ζ̂ −0.025∗∗ −0.016∗

(0.010) (0.009)

ADM-1 FE YES YES YES YES

R2 0.670 0.729 0.729 0.731
Mean Outcome (kWh) 2495.943 2495.943 2495.943 2495.943
Countries 25 25 25 25
Observations 682727 682727 682727 682727

Notes: Dependent variable: logarithm of electricity consumption (kWh). For
DMF Columns the first stage is shown in Table A2 Columns 3-4. Regressions are
conducted using survey weights. Standard errors are clustered at the ADM1 level;
*p < 0.10, **p < 0.05, ***p < 0.01.
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Table A2: Logit regression for air-conditioning ownership

LPM
Logit

Coefficients M. Effects
(1) (2) (3) (4)

CDD 0.059∗ −0.040 0.818∗ 0.073
(0.033) (0.035) (0.449) (0.056)

CDD2 −0.001 0.002∗∗ −0.021∗∗ −0.002
(0.001) (0.001) (0.010) (0.001)

CDD × Log(Exp) 0.010∗∗∗ 0.020 0.002
(0.002) (0.024) (0.002)

CDD2 × Log(Exp) −0.000∗∗∗ 0.001 0.000
(0.000) (0.001) (0.000)

CDD −0.006 −0.009 −0.249 −0.022
(0.028) (0.028) (0.321) (0.030)

CDD2 −0.000 −0.000 −0.003 −0.000
(0.000) (0.000) (0.005) (0.001)

HDD 0.014∗∗∗ 0.014∗∗∗ 0.185∗∗∗ 0.017*
(0.005) (0.005) (0.059) (0.001)

HDD2 −0.000∗∗ −0.000∗∗∗ −0.002∗∗∗ -0.000*
(0.000) (0.000) (0.001) (0.000)

CDD × Log(P) 0.008∗∗ 0.005 0.134∗∗∗ 0.012∗∗

(0.003) (0.003) (0.032) (0.005)

CDD2 × Log(P) −0.000∗ −0.000 −0.003∗∗∗ −0.000∗∗

(0.000) (0.000) (0.001) (0.000)
Log(Exp) 0.077∗∗∗ 0.006 0.354∗∗∗ 0.032

(0.008) (0.014) (0.132) (0.021)
Log(P) −0.023 −0.012 −0.077 −0.007

(0.037) (0.037) (0.293) (0.027)
Log(P) × Household Size −0.008∗∗∗ −0.009∗∗∗ −0.127∗∗∗ −0.011∗∗

(0.003) (0.003) (0.042) (0.005)
Log(P) × House Ownership 0.022∗∗ 0.020∗ 0.113 0.010

(0.010) (0.011) (0.102) (0.009)
Urbanisation (%) 0.186∗∗∗ 0.181∗∗∗ 1.668∗∗∗ 0.150∗∗

(0.067) (0.063) (0.483) (0.071)
House Ownership (Yes = 1) 0.074∗∗∗ 0.074∗∗∗ 0.604∗∗∗ 0.052∗∗

(0.014) (0.015) (0.144) (0.020)
Household Size −0.017∗∗∗ −0.018∗∗∗ −0.264∗∗∗ −0.024∗∗

(0.004) (0.005) (0.072) (0.010)
Primary Edu. 0.043∗∗∗ 0.041∗∗∗ 0.680∗∗∗ 0.057∗∗

(0.008) (0.008) (0.076) (0.025)
Secondary Edu. 0.105∗∗∗ 0.102∗∗∗ 1.156∗∗∗ 0.100∗∗∗

(0.012) (0.012) (0.104) (0.039)
Post Edu. 0.177∗∗∗ 0.175∗∗∗ 1.836∗∗∗ 0.180∗∗∗

(0.014) (0.014) (0.127) (0.056)
Age (Head) 0.001∗∗∗ 0.001∗∗∗ 0.010∗∗∗ 0.001∗∗

(0.000) (0.000) (0.002) (0.000)
Female (Yes = 1) −0.003 −0.003 −0.116∗∗∗ −0.010∗∗

(0.004) (0.004) (0.037) (0.005)

ADM-1 FE YES YES YES YES

Mean Outcome 0.263 0.263 0.263 0.263
Countries 25 25 25 25
Observations 692718 692718 682727 682727

Notes: Dependent variable is air-conditioning (0,1). Column (4) shows the average
marginal effects (AMEs) from the logit regression. Regressions are conducted using
survey weights. Standard errors are clustered at the ADM1 level; ∗∗∗p < 0.01; ∗∗p <
0.05; ∗p < 0.1.
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Table A3: Robustness checks

Subnational FE Country FE CDD 24 - HDD 15 No Electricity Price Price Interactions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

AC 0.315∗∗∗ 0.008 0.335∗∗∗ 0.026 0.362∗∗∗ 0.165∗∗∗ 0.358∗∗∗ 0.033 0.358∗∗∗ 0.061
(0.024) (0.040) (0.033) (0.063) (0.031) (0.037) (0.032) (0.062) (0.029) (0.062)

AC × CDD 0.038∗∗∗ 0.038∗∗∗ 0.086∗∗∗ 0.039∗∗∗ 0.034∗∗∗

(0.007) (0.010) (0.019) (0.010) (0.010)
AC × CDD2 −0.001∗∗∗ −0.001∗∗ −0.004∗∗∗ −0.001∗∗∗ −0.001∗∗

(0.000) (0.000) (0.001) (0.000) (0.000)

Controls YES YES YES YES YES YES YES YES YES YES
Correction Term YES YES YES YES YES YES YES YES YES YES
Country FE NO NO YES YES NO NO NO NO NO NO
Sub-national FE YES YES NO NO NO NO NO NO NO NO
ADM-1 FE NO NO NO NO YES YES YES YES YES YES

R2 0.728 0.729 0.723 0.756 0.730 0.731 0.726 0.728 0.733 0.734
Mean Outcome (kWh) 2695.744 2695.744 2439.238 2439.238 2495.943 2495.943 2495.943 2495.943 2495.943 2495.943
Countries 25 25 25 25 25 25 25 25 25 25
Observations 639793 639793 692718 692718 682727 682727 682727 682727 682727 682727

Squared Correction Interaction Winsorized Sample Trimmed Sample Unweighted

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

AC 0.358∗∗∗ 0.024 0.348∗∗∗ 0.015 0.435∗∗∗ −0.030 0.343∗∗∗ 0.011 0.367∗∗∗ −0.031
(0.032) (0.063) (0.034) (0.061) (0.034) (0.072) (0.029) (0.059) (0.026) (0.057)

AC × CDD 0.039∗∗∗ 0.042∗∗∗ 0.059∗∗∗ 0.040∗∗∗ 0.034∗∗∗

(0.010) (0.010) (0.012) (0.009) (0.007)
AC × CDD2 −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Controls YES YES YES YES YES YES YES YES YES YES
Correction Term YES YES YES YES YES YES YES YES YES YES
ADM-1 FE YES YES YES YES YES YES YES YES YES YES
Correction Term2 YES YES NO NO NO NO NO NO NO NO
Correction Term × f(CDD) NO NO YES YES NO NO NO NO NO NO

R2 0.730 0.731 0.730 0.731 0.672 0.675 0.596 0.598 0.729 0.731
Mean Outcome (kWh) 2495.943 2495.943 2495.943 2495.943 2277.863 2277.863 2123.612 2123.612 2495.943 2495.943
Countries 25 25 25 25 25 25 25 25 25 25
Observations 682727 682727 682727 682727 682727 682727 616531 616531 682727 682727

Notes: Dependent variable: logarithm of electricity consumption (kWh). ”Controls” include natural logarithm of electricity price, and weather and socio-economic and demographic
variables. ”Sub-national” means the most disaggregated geographical information available for each country. Regressions (1)-(20) are conducted using survey weights. Standard
errors are clustered at the first sub-national (ADM1) level in parentheses in parentheses. ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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Table A4: Instrumenting electricity prices

DMF 2SLS 2SLS
(1) (2) (3)

AC 0.339∗∗∗ 0.336∗∗∗ 0.338∗∗∗

(0.040) (0.040) (0.040)
Log(P) −0.530∗∗∗ −0.638∗∗∗ −0.557∗∗∗

(0.069) (0.108) (0.084)

Controls YES YES YES
Correction Term YES YES YES
Instruments Country ADM-1

Kleibergen-Paap Wald F test 86693.923 322.667
R2 0.627 0.626 0.627
Mean Outcome 2439.238 2439.238 2439.238
Countries 25 25 25
Observations 692718 692718 692718

Notes: Dependent variable: logarithm of electricity consumption (kWh). ”Con-
trols” include weather and socio-economic and demographic variables. Regres-
sions are conducted using survey weights. Standard errors are clustered at the
ADM1 level; ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

Table A5: The effect of air conditioning on electricity quantity - Income quintile

1st Quintile 2nd Quintile 3rd Quintile 4th Quintile 5th Quintile
(1) (2) (3) (4) (5)

AC −0.043 0.102 0.248∗∗∗ −0.045 0.128∗

(0.091) (0.082) (0.079) (0.121) (0.071)
AC × CDD 0.075∗∗∗ 0.042∗∗∗ 0.004 0.050∗∗∗ 0.028∗∗∗

(0.015) (0.013) (0.012) (0.017) (0.010)
AC × CDD2 −0.002∗∗∗ −0.001∗∗∗ 0.000 −0.001∗∗ −0.001∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Controls YES YES YES YES YES
Correction Term YES YES YES YES YES
ADM-1 FE YES YES YES YES YES

R2 0.664 0.627 0.696 0.656 0.674
Mean Outcome 1711.097 2076.010 2533.789 2925.536 3755.844
Countries 22 25 24 25 25
Observations 123449 131311 131715 132250 134060

Notes: Dependent variable: logarithm of electricity consumption (kWh). ”Controls” include nat-
ural logarithm of electricity price, and weather and socio-economic and demographic variables.
Regressions are conducted using survey weights. Standard errors are clustered at the ADM1 level;
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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Table A6: Air conditioning and refrigerators electricity use

DMF DMF DMF DMF DMF DMF
(1) (2) (3) (4) (5) (6)

AC 0.369∗∗∗ 0.339∗∗∗ 0.044 0.339∗∗∗ 0.337∗∗∗ 0.049
(0.033) (0.027) (0.069) (0.027) (0.026) (0.068)

AC × CDD 0.032∗∗∗ 0.030∗∗∗

(0.010) (0.010)
AC × CDD2 −0.001∗∗ −0.000∗

(0.000) (0.000)
Refrigerator 0.370∗∗∗ 0.370∗∗∗ 0.385∗∗∗ 0.320∗∗∗ 0.366∗∗∗

(0.030) (0.029) (0.060) (0.082) (0.079)
Refrigerator × CDD −0.001 0.009 0.006

(0.002) (0.009) (0.009)
Refrigerator × CDD2 −0.000 −0.000

(0.000) (0.000)

Correction Term (AC) YES YES YES YES YES YES
Correction Term (Refrigerator) NO YES YES YES YES YES
ADM-1 FE YES YES YES YES YES YES

R2 0.726 0.737 0.738 0.737 0.737 0.739
Mean Outcome 2378.582 2378.582 2378.582 2378.582 2378.582 2378.582
Countries 24 24 24 24 24 24
Observations 669551 669551 669551 669551 669551 669551

Notes: Dependent variable: logarithm of electricity consumption (kWh). ”Controls” include natural logarithm of elec-
tricity price, weather and socio-economic and demographic variables. Regressions are conducted using survey weights.
Standard errors are clustered at the ADM1 level; *p < 0.10, **p < 0.05, ***p < 0.01.
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Table A7: Air conditioning and television electricity use

DMF DMF DMF DMF DMF DMF
(1) (2) (3) (4) (5) (6)

AC 0.365∗∗∗ 0.358∗∗∗ 0.053 0.359∗∗∗ 0.359∗∗∗ 0.055
(0.035) (0.034) (0.085) (0.034) (0.034) (0.085)

AC × CDD 0.033∗∗ 0.033∗∗∗

(0.013) (0.013)
AC × CDD2 −0.001∗ −0.001∗

(0.000) (0.000)
TV 0.243∗∗∗ 0.238∗∗∗ 0.146∗∗ 0.170∗ 0.191∗

(0.030) (0.030) (0.056) (0.100) (0.100)
TV × CDD 0.005∗ 0.001 −0.001

(0.003) (0.012) (0.012)
TV × CDD2 0.000 0.000

(0.000) (0.000)

Correction Term (AC) YES YES YES YES YES YES
Correction Term (TV) NO YES YES YES YES YES
ADM-1 FE YES YES YES YES YES YES

R2 0.676 0.679 0.680 0.679 0.679 0.680
Mean Outcome 1767.430 1767.430 1767.430 1767.430 1767.430 1767.430
Countries 23 23 23 23 23 23
Observations 586153 586153 586153 586153 586153 586153

Notes: Dependent variable: logarithm of electricity consumption (kWh). ”Controls” include natural loga-
rithm of electricity price, weather and socio-economic and demographic variables. Regressions are conducted
using survey weights. Standard errors are clustered at the ADM1 level; *p < 0.10, **p < 0.05, ***p < 0.01.
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Table A8: Air conditioning and PC electricity use

DMF DMF DMF DMF DMF DMF
(1) (2) (3) (4) (5) (6)

AC 0.412∗∗∗ 0.352∗∗∗ 0.011 0.350∗∗∗ 0.351∗∗∗ 0.004
(0.036) (0.030) (0.102) (0.030) (0.029) (0.099)

AC × CDD 0.038∗∗∗ 0.038∗∗∗

(0.014) (0.014)
AC × CDD2 −0.001 −0.001

(0.000) (0.000)
PC 0.257∗∗∗ 0.254∗∗∗ 0.221∗∗∗ 0.230∗∗∗ 0.277∗∗∗

(0.018) (0.017) (0.034) (0.054) (0.046)
PC × CDD 0.003 0.002 −0.003

(0.002) (0.008) (0.007)
PC × CDD2 0.000 0.000

(0.000) (0.000)

Correction Term (AC) YES YES YES YES YES YES
Correction Term (PC) NO YES YES YES YES YES
ADM-1 FE YES YES YES YES YES YES

R2 0.697 0.706 0.708 0.706 0.706 0.708
Mean Outcome 1936.902 1936.902 1936.902 1936.902 1936.902 1936.902
Countries 19 19 19 19 19 19
Observations 384391 384391 384391 384391 384391 384391

Notes: Dependent variable: logarithm of electricity consumption (kWh). ”Controls” include natural loga-
rithm of electricity price, weather and socio-economic and demographic variables. Regressions are conducted
using survey weights. Standard errors are clustered at the ADM1 level; *p < 0.10, **p < 0.05, ***p < 0.01.
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Table A9: Air conditioning and washing machine electricity use

DMF DMF DMF DMF DMF DMF
(1) (2) (3) (4) (5) (6)

AC 0.356∗∗∗ 0.311∗∗∗ 0.034 0.311∗∗∗ 0.309∗∗∗ 0.044
(0.033) (0.029) (0.062) (0.029) (0.029) (0.062)

AC × CDD 0.035∗∗∗ 0.033∗∗∗

(0.010) (0.010)
AC × CDD2 −0.001∗∗ −0.001∗∗

(0.000) (0.000)
Washing Machine 0.273∗∗∗ 0.266∗∗∗ 0.241∗∗∗ 0.198∗∗∗ 0.231∗∗∗

(0.024) (0.024) (0.040) (0.044) (0.042)
Washing Machine × CDD 0.002 0.010∗ 0.006

(0.002) (0.006) (0.005)
Washing Machine × CDD2 −0.000 −0.000

(0.000) (0.000)

Correction Term (AC) YES YES YES YES YES YES
Correction Term (Washing M.) NO YES YES YES YES YES
ADM-1 FE YES YES YES YES YES YES

R2 0.694 0.702 0.703 0.702 0.702 0.703
Mean Outcome 2651.020 2651.020 2651.020 2651.020 2651.020 2651.020
Countries 21 21 21 21 21 21
Observations 443388 443388 443388 443388 443388 443388

Notes: Dependent variable: logarithm of electricity consumption (kWh). ”Controls” include natural logarithm of elec-
tricity price, weather and socio-economic and demographic variables. Regressions are conducted using survey weights.
Standard errors are clustered at the ADM1 level; *p < 0.10, **p < 0.05, ***p < 0.01.
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Table A10: Evolution of air-conditioning adoption and utilisation drivers used for household-
level projections, by country/region.

CDD HDD Expenditure Age Edu Housing index Urban

Country Scenario Mean Mean Mean Mean Mean Mean Mean

Africa Current 781.58 5.10 975.49 46.72 0.68 1.53 0.05
SSP2, 2050 1044.41 1.93 3530.40 47.64 1.72 2.34 0.03
SSP5, 2050 1192.91 1.45 7112.50 47.58 1.72 2.34 0.05

Argentina Current 194.79 567.38 16 428.81 51.40 1.54 2.94 0.07
SSP2, 2050 538.26 271.47 41 628.02 53.79 2.72 3.00 0.09
SSP5, 2050 563.60 262.47 60 891.98 52.82 2.73 3.00 0.14

Brazil Current 506.69 18.43 13 598.31 50.37 1.52 2.77 0.05
SSP2, 2050 786.28 9.58 25 846.24 53.47 2.64 2.99 0.07
SSP5, 2050 979.74 7.93 45 060.97 52.48 2.65 2.99 0.09

China Current 177.94 1947.28 5292.69 47.79 1.27 2.60 0.08
SSP2, 2050 240.60 1658.77 39 070.21 50.61 2.50 2.97 0.16
SSP5, 2050 298.20 1500.97 67 782.94 49.93 2.50 2.97 0.18

Germany Current 2.50 2464.79 26 217.15 44.58 2.02 0.15
SSP2, 2050 19.76 2250.18 53 814.01 46.34 2.91 0.21
SSP5, 2050 26.27 2066.22 67 190.90 46.17 2.91 0.25

India Current 1035.63 126.39 5397.26 46.87 1.36 0.05
SSP2, 2050 1015.52 115.18 17 656.35 49.74 2.43 0.05
SSP5, 2050 1190.18 102.89 31 764.76 48.70 2.43 0.06

Indonesia Current 676.93 0.69 7532.69 46.79 1.47 2.76 0.05
SSP2, 2050 891.76 0.00 30 377.00 49.76 2.58 3.00 0.10
SSP5, 2050 1031.67 0.00 77 282.24 48.95 2.58 3.00 0.13

Italy Current 32.68 1654.54 30 078.02 56.68 1.61 0.10
SSP2, 2050 84.68 4.92 48 178.26 59.03 2.68 0.15
SSP5, 2050 113.26 0.00 60 394.15 58.62 2.67 0.18

Mexico Current 359.65 139.59 8807.44 49.37 1.59 2.88 0.08
SSP2, 2050 486.88 42.22 31 681.76 52.30 2.63 3.00 0.11
SSP5, 2050 566.25 40.78 54 089.87 51.45 2.63 3.00 0.12

OECD-EU Current 21.45 1945.93 31 281.15 45.04 2.09 0.23
SSP2, 2050 54.75 1499.23 52 649.87 46.39 2.88 0.14
SSP5, 2050 66.63 1398.91 62 837.04 46.12 2.89 0.17

OECD-NonEU Current 45.52 1957.53 36 970.23 46.03 2.04 0.34
SSP2, 2050 135.80 979.38 78 778.68 47.15 2.93 0.27
SSP5, 2050 164.59 848.43 119 115.84 46.99 2.94 0.29

Pakistan Current 1336.06 241.27 7902.02 46.25 1.07 2.12 0.03
SSP2, 2050 1878.83 107.90 13 124.18 48.90 2.12 2.90 0.05
SSP5, 2050 1953.75 81.64 19 056.90 47.57 2.11 2.90 0.06

United States Current 190.28 1562.99 49 283.27 52.31 2.32 0.26
SSP2, 2050 325.49 1562.28 66 269.82 53.87 2.95 0.21
SSP5, 2050 358.17 1533.52 77 524.95 53.78 2.95 0.25

Notes: Values are population weighted.
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Table A11: The role of solar power generation — PV potential output

DMF DMF DMF
(1) (2) (3)

AC 0.361∗∗∗ 0.552∗∗∗ 0.361∗∗∗

(0.031) (0.186) (0.031)
PVOUT −0.207∗∗ −0.195∗ −0.140

(0.099) (0.101) (0.179)
AC × PVOUT −0.051

(0.047)
Log(P) −0.386∗∗∗ −0.385∗∗∗ −0.549∗

(0.039) (0.039) (0.315)
Log(P) × PVOUT 0.041

(0.081)

Controls YES YES YES
Correction Term YES YES YES
ADM-1 FE YES YES YES

R2 0.730 0.730 0.730
Mean Outcome 2495.943 2495.943 2495.943
Countries 25 25 25
Observations 682727 682727 682727

Notes: Dependent variable: logarithm of electricity consumption
(kWh). ”Controls” include weather and socio-economic and demo-
graphic variables. Regressions are conducted using survey weights.
(1), (2), (3) and (4) clustered standard errors at the ADM-1 level in
parentheses; *p < 0.10, **p < 0.05, ***p < 0.01.
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Table A12: The role of solar power generation — PV capacity

DMF DMF DMF
(1) (2) (3)

AC 0.361∗∗∗ 0.401∗∗∗ 0.361∗∗∗

(0.031) (0.043) (0.031)
asinh(PV Capacity) −0.008 −0.007 −0.042∗

(0.008) (0.008) (0.024)
AC × asinh(PV Capacity) −0.008

(0.008)
Log(P) −0.393∗∗∗ −0.395∗∗∗ −0.369∗∗∗

(0.040) (0.040) (0.038)
Log(P) × asinh(PV Capacity) −0.018∗

(0.010)

Controls YES YES YES
Correction Term YES YES YES
ADM-1 FE YES YES YES

R2 0.730 0.730 0.730
Mean Outcome 2495.943 2495.943 2495.943
Countries 25 25 25
Observations 682727 682727 682727

Notes: Dependent variable: logarithm of electricity consumption (kWh). ”Con-
trols” include natural logarithm of electricity price, weather and socio-economic and
demographic variables. Regressions are conducted using survey weights. Standard
errors are clustered at the ADM1 level; *p < 0.10, **p < 0.05, ***p < 0.01.
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Table A13: The role of solar power generation — PV Generation

DMF DMF DMF
(1) (2) (3)

AC 0.361∗∗∗ 0.412∗∗∗ 0.361∗∗∗

(0.031) (0.046) (0.031)
asinh(PV Generation) −0.005 −0.004 −0.030

(0.006) (0.006) (0.018)
AC × asinh(PV Generation) −0.009

(0.007)
Log(P) −0.393∗∗∗ −0.395∗∗∗ −0.370∗∗∗

(0.040) (0.040) (0.037)
Log(P) × asinh(PV Generation) −0.013∗

(0.007)

Controls YES YES YES
Correction Term YES YES YES
ADM-1 FE YES YES YES

R2 0.730 0.730 0.730
Mean Outcome 2495.943 2495.943 2495.943
Countries 25 25 25
Observations 682727 682727 682727

Notes: Dependent variable: logarithm of electricity consumption (kWh). ”Controls”
include natural logarithm of electricity price, weather and socio-economic and demo-
graphic variables. Regressions are conducted using survey weights. Standard errors
are clustered at the ADM1 level; *p < 0.10, **p < 0.05, ***p < 0.01.
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Table A14: Air conditioning ownership and PV generation

Logit Logit
(1) (2)

asinh(PV Generation) 0.031
(0.025)

1(PV Gen. > Median) 0.388∗∗∗

(0.119)

Controls YES YES
ADM-1 FE YES YES

Mean Outcome 0.263 0.263
Countries 25 25
Observations 682727 682727

Notes: Dependent variable is air conditioning (0,1).
”Controls” include natural logarithm of electricity
price, weather and socio-economic and demographic
variables. Regressions are conducted using survey
weights. Standard errors are clustered at the ADM1
level; ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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Table A15: CO2 emissions from air-conditioning electricity use

2020 SSP2-4.5 (2050) SSP5-8.5 (2050)

Country Mean Mean Mean

Pooled 365.20 691.60 948.10

Africa 1.50 2.00 2.50
Argentina 1.90 5.40 5.10
Brazil 9.40 28.10 35.10
China 135.40 252.00 288.80
Indonesia 5.00 17.50 26.30
India 33.90 122.80 207.20
Italy 3.30 7.70 10.80
Mexico 3.10 8.90 6.70
OECD-EU 6.90 18.20 25.20
OECD-NonEU 21.60 39.60 49.10
Pakistan 6.40 11.80 15.70
United States 177.90 291.30 309.20

Notes: Values are in MtCO2
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Figure A1: Heat maps of (A) AC ownership and (B) household electricity consumption, by
country. Each facet maps the average level of the two variables at each expenditure and CDDs
quintiles intersection in each country. N.B.: expenditure and CDDs quintiles are specific to each
country.
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Figure A2: Boxplot of the marginal effects of the drivers of household electricity consumption,
divided into OECD and non-OECD countries. Estimates are based on country-specific average
marginal effects calculated from standardised regression coefficients. Note: only coefficients
with p < 0.05 are included.
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Figure A3: Distribution of estimated household (air conditioning) electricity consumption, strat-
ified by quintile of total household electricity consumption in 2020.
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Figure A4: Comparison of future (A,C) air conditioning penetration and (B,D) total electricity
consumption for cooling (TWh) when projecting all drivers (bold line) or only climate and in-
come (dashed line).
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Figure A5: Decomposition analysis of average (per household) historical and future electric-
ity demand. Facets group countries and regions. Each facet shows to socio-economic/climate
change scenario combination (SSPs). Colours describe the determinants of current (up to 100%)
and future projected (above 100%) electricity consumption, inclusive of changes in air condi-
tioning intensive and extensive margins. The total value on the y-axis represents consumption
growth in year 2050 compared to baseline. Note: projections are based on country/region-
specific models.
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Figure A6: Ceteris paribus analysis of the change in the proportion of households’ expenditure
for air conditioning electricity as a share of total expenditure, by country/region and scenario.
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Supplementary information (not for publication)

Data description

Our data set consider three categories of drivers of electricity consumption:

1. Air-conditioning ownership (AC): the variable that identifies whether at the interview
date of the survey a household owns at least an air-conditioning unit in the dwelling.

2. Climate/weather and income are the core determinants of air-conditioning uptake and
utilisation that have been used traditionally by the literature. We measure them using
households’ total expenditure as a proxy for income conditions, and the Cooling and Heat-
ing Degree Days experienced in the administrative area where the household resides.

3. Socio-demographic drivers: they include households’ characteristics such as education,
age, and gender of the household head, home ownership, housing quality (when avail-
able), household size, urbanization level in the administrative area where the household
resides.

The remainder of this section describes in more detail the micro data variables considered in our
dataset.

• Electricity consumption (in natural logarithm): household electricity consumption is—
depending on the country-specific questionnaire—either directly available or inferred through
information on electricity expenditure. In the latter case, electricity expenditure informa-
tion is divided by either national or sub-national or household-specific residential retail
prices data matching the survey year of each country. When electricity expenditures or
quantity were only reported as monthly or quarterly values we have scaled these up to get
annual totals, assuming the values were representative of the entire year. Any households
with missing or negative quantity were dropped from the analysis.

• Air-conditioning ownership (AC): we define it as binary variable (0,1). To construct it, we
have not distinguished among window/room/centralised air-conditioning system, but
we have grouped these types of air-conditioning within the same variable definition.26

• Total expenditure (in natural logarithm): to construct this variable we use total house-
hold expenditures when this is available (Mexico, Brazil, Argentina, Italy, Nigeria, Ghana,
Kenya, Burkina Faso, Niger, Pakistan, Tanzania, China, Indonesia, India), and total house-
hold income in all other cases. Household total expenditure refers to the sum of all ex-
penditures (durable goods, services, etc.) faced by the household in the survey year. It is
the key variable identifying the economic status of the household. The unit is harmonised
to 2011 PPP USD: first, to convert from local currency unit to USD we multiply total ex-
penditure by the survey year-specific World Bank’s PPP conversion factor for private con-
sumption27 (LCU per international USD); second, to obtain the variable in 2011 USD PPP
we adjust the variable for inflation by using the US Bureau of Labor Statistics CPI infla-
tion calculator28. As for electricity expenditure or quantity, when total expenditures (or

26For Kenya the information about air-conditioning ownership is reported as a question in the survey question-
naire, but it is not available in the released data. However, the information about whether a household has purchased
an air-conditioning system in the last year is available. We use this information for Kenya in our analysis. This means
that for Kenya in 2015/2016 the ownership rate is likely underestimated. However, we can expect it to be indeed very
low as in the other African countries. As a robustness, in this Supplementary information we provide the baseline
results (Table S15), excluding Kenya from the pooled regression. The estimates of the effect of air-conditioning are
basically the same.

27World Bank indicator PA.NUS.PRVT.PP: https://data.worldbank.org/indicator/PA.NUS.PRVT.PP
28https://data.bls.gov/cgi-bin/cpicalc.pl
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incomes) were only reported as monthly or quarterly values we scaled these up to get an-
nual totals, assuming the values were representative of the entire year. Any households
with missing or negative values were dropped from the analysis.

• Urbanization: since the declared urban status of the household was not available for all
countries, we extract gridded population-weighted urbanization rates data from Gao and
Pesaresi (2021) for the smallest administrative unit available at each survey country and
parse it to households. This way, we generate an additional continuous variable for urban-
ization expressing the share of population-weighted area within the administrative unit of
belonging to the household that is classified as urban.

• Age and gender of household head: each surveyed household in each country identifies
a unique member of the household who is classified as the household head. Information
on the age and gender of the person in charge are processed and included in the database
as a continuous and categorical variable, respectively.29

• Education level category of household head: depending on the country-specific ques-
tionnaire, education levels are generally reported in a set of different categories, or as the
number of years of education received. To harmonise the variable, a standard categorisa-
tion of education levels is proposed considering the four following levels: (i) No/lower
than primary education; (ii) primary education; (iii) secondary education; (iv) tertiary or
superior education level. The categorization is then applied to all countries, resulting in a
harmonized categorical variable.

• Household size: numerical variable describing the number of people living inside the
household.

• Home ownership status: a categorical variable describing whether the household is own-
ing or renting (or other forms of arrangement) the home where it lives.30

• Housing quality index: the housing quality index is a three-category variable introduced
for low and lower-middle income countries only. Albeit heterogeneous across countries,
it seeks to capture different characteristics of the dwelling based on country-specific ques-
tionnaire information on walls and roof materials and quality; water supply infrastructure;
and type of toilet service available. A value of 1 describes a household with building ma-
terials such as dung and mud and lack of toilet inside the household; a value of 2 identifies
a dwelling built with more solid and insulating materials; while a value of 3 describes a
home built with bricks and having piped water and a toilet facility. The housing quality
index variable thus serves as a proxy of the type of household and is additional to other
socio-economic variable. As it is not available for all countries, we include these variable
only in country-specific regression.

• Electricity prices: we gather residential electricity prices information from different sources,
and at different scales (national, sub-national, household-level). As for total expenditure,
electricity prices are also converted in 2011 USD PPP.

29Notice that only in Italy age of the household members is expressed in three categories (18-34, 35-64, 65+). To
preserve the continuous variation in the variable in the pooled sample, we assign the same age (26, 50, 70) to each
member within the same category.

30Notice that in Germany only households that do not own their dwelling report household electricity expenditure
in the survey.
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Additional descriptive statistics

This subsection presents weighted descriptive statistics for each country or group of country
available in our data set.

Table S1: Weighted descriptive statistics — Africa

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 293.04 601.40 25.86 47.90 118.86 311.00 690.65
Air-conditioning (Yes = 1) 0.03 0.16

Climate and weather

CDD (100s) 23.83 10.57 2.89 24.38 27.74 30.04 32.36
CDD (100s) 25.42 10.59 4.75 25.55 29.31 31.46 33.66
HDD (100s) 0.06 0.27 0.00 0.00 0.00 0.00 0.00

Socio-economic and demographic

Total Expenditure ($2011 PPP) 3942.18 5188.96 742.57 1158.73 1880.86 4663.56 9675.84
Electricity Price ($2011 PPP / kWh) 0.26 0.06 0.17 0.23 0.24 0.34 0.34
Urbanisation Share 0.05 0.08 0.00 0.01 0.02 0.04 0.10
Home Ownership (Yes = 1) 0.49 0.50
Household Size 6.26 4.20 2.00 4.00 5.00 7.00 11.00
No Education (Yes = 1) 0.10 0.29
Primary Education (Yes = 1) 0.33 0.47
Secondary Education (Yes = 1) 0.44 0.50
Post Education (Yes = 1) 0.13 0.34
Age of Household Head 47.27 21.06 30.00 36.00 45.00 56.00 66.00
Female Household Head (Yes = 1) 0.20 0.40

Other electrical appliances

Refrigerator (Yes = 1) 0.26 0.44
Television (Yes = 1) 0.73 0.44
Computer (Yes = 1) 0.10 0.30
Washing Machine (Yes = 1) 0.03 0.18

Notes: Descriptive statistics are computed survey weights.
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Table S2: Weighted descriptive statistics — Argentina

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 2433.84 4398.99 239.56 484.62 1087.93 2582.84 5733.21
Air-conditioning (Yes = 1) 0.46 0.50

Climate and weather

CDD (100s) 7.26 2.95 5.06 6.19 6.19 7.39 9.51
CDD (100s) 8.43 3.14 5.85 7.26 7.26 8.98 10.26
HDD (100s) 9.75 5.65 5.99 7.57 8.91 8.91 16.41

Socio-economic and demographic

Total Expenditure ($2011 PPP) 25682.93 22100.60 7340.17 11654.13 19648.50 32606.08 50299.61
Electricity Price ($2011 PPP / kWh) 0.82 0.77 0.13 0.29 0.88 0.88 1.69
Urbanisation Share 0.12 0.13 0.00 0.01 0.16 0.16 0.16
Home Ownership (Yes = 1) 0.70 0.46
Household Size 3.18 1.75 1.00 2.00 3.00 4.00 5.00
No Education (Yes = 1) 0.09 0.29
Primary Education (Yes = 1) 0.37 0.48
Secondary Education (Yes = 1) 0.34 0.47
Post Education (Yes = 1) 0.20 0.40
Age of Household Head 51.12 16.37 30.00 38.00 50.00 64.00 73.10
Female Household Head (Yes = 1) 0.43 0.49

Other electrical appliances

Refrigerator (Yes = 1) 0.98 0.14
Television (Yes = 1) 0.97 0.16
Washing Machine (Yes = 1) 0.88 0.32

Notes: Descriptive statistics are computed survey weights.
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Table S3: Weighted descriptive statistics — Brazil

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 2111.22 1511.53 768.00 1152.00 1764.00 2640.00 3804.00
Air-conditioning (Yes = 1) 0.21 0.41

Climate and weather

CDD (100s) 17.14 8.23 6.98 10.11 13.76 25.38 30.02
CDD (100s) 18.74 8.34 8.06 12.22 16.04 26.21 31.92
HDD (100s) 1.07 1.35 0.00 0.00 0.72 1.80 2.97

Socio-economic and demographic

Total Expenditure ($2011 PPP) 23733.24 32050.31 5568.50 8935.59 15319.24 27223.72 48615.70
Electricity Price ($2011 PPP / kWh) 0.28 0.09 0.19 0.23 0.27 0.32 0.36
Urbanisation Share 0.10 0.14 0.00 0.01 0.03 0.12 0.33
Home Ownership (Yes = 1) 0.74 0.44
Household Size 2.99 1.46 1.00 2.00 3.00 4.00 5.00
No Education (Yes = 1) 0.07 0.25
Primary Education (Yes = 1) 0.40 0.49
Secondary Education (Yes = 1) 0.36 0.48
Post Education (Yes = 1) 0.18 0.38
Age of Household Head 50.52 15.69 30.00 38.00 50.00 62.00 72.00
Female Household Head (Yes = 1) 0.42 0.49

Other electrical appliances

Refrigerator (Yes = 1) 0.99 0.12
Television (Yes = 1) 0.97 0.17
Computer (Yes = 1) 0.48 0.50
Washing Machine (Yes = 1) 0.66 0.47

Notes: Descriptive statistics are computed survey weights.
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Table S4: Weighted descriptive statistics — China

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 2148.61 2678.63 590.16 969.70 1481.48 2424.24 4232.80
Air-conditioning (Yes = 1) 0.36 0.48

Climate and weather

CDD (100s) 8.45 3.99 2.96 4.75 8.45 10.66 14.86
CDD (100s) 8.93 4.20 3.86 4.98 9.35 10.47 16.03
HDD (100s) 22.29 12.65 6.94 14.37 19.15 25.90 39.42

Socio-economic and demographic

Total Expenditure ($2011 PPP) 8598.56 13396.51 1191.45 2859.47 5957.23 10723.02 16680.25
Electricity Price ($2011 PPP / kWh) 0.12 0.01 0.11 0.12 0.12 0.13 0.14
Urbanisation Share 0.06 0.07 0.01 0.02 0.04 0.09 0.14
Home Ownership (Yes = 1) 0.88 0.33
Household Size 3.79 1.81 2.00 2.00 4.00 5.00 6.00
No Education (Yes = 1) 0.28 0.45
Primary Education (Yes = 1) 0.23 0.42
Secondary Education (Yes = 1) 0.42 0.49
Post Education (Yes = 1) 0.07 0.26
Age of Household Head 47.80 16.75 25.00 35.00 48.00 60.00 70.00
Female Household Head (Yes = 1) 0.49 0.50

Other electrical appliances

Refrigerator (Yes = 1) 0.80 0.40
Television (Yes = 1) 0.94 0.23
Computer (Yes = 1) 0.42 0.49
Washing Machine (Yes = 1) 0.79 0.40

Notes: Descriptive statistics are computed survey weights.
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Table S5: Weighted descriptive statistics — Germany

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 2415.17 1296.08 1166.94 1539.47 2070.75 2942.21 4134.37
Air-conditioning (Yes = 1) 0.01 0.11

Climate and weather

CDD (100s) 1.11 0.21 0.86 0.94 1.01 1.22 1.48
CDD (100s) 2.32 0.57 1.70 2.02 2.11 2.53 3.42
HDD (100s) 28.15 1.11 26.85 27.42 27.81 28.72 29.96

Socio-economic and demographic

Total Expenditure ($2011 PPP) 29099.72 18545.79 11719.93 16435.71 25285.71 37928.57 50571.43
Electricity Price ($2011 PPP / kWh) 0.31 0.01 0.30 0.31 0.31 0.32 0.33
Urbanisation Share 0.14 0.06 0.08 0.10 0.13 0.23 0.23
Home Ownership (Yes = 1) 0.00 0.00
Household Size 1.79 1.12 1.00 1.00 1.00 2.00 3.00
No Education (Yes = 1) 0.00 0.00
Primary Education (Yes = 1) 0.20 0.40
Secondary Education (Yes = 1) 0.58 0.49
Post Education (Yes = 1) 0.22 0.41
Age of Household Head 50.42 20.87 23.75 31.00 52.00 67.00 79.00
Female Household Head (Yes = 1) 0.66 0.47

Notes: Descriptive statistics are computed survey weights. Notice that in Germany only households that do not own
their dwelling report household electricity expenditure in the survey.
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Table S6: Weighted descriptive statistics — Indonesia

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 1324.28 1443.93 357.60 578.40 960.00 1596.00 2522.40
Air-conditioning (Yes = 1) 0.07 0.25

Climate and weather

CDD (100s) 23.80 5.73 15.71 20.53 24.93 28.45 29.76
CDD (100s) 24.91 5.74 16.71 21.37 25.93 29.65 31.20
HDD (100s) 0.03 0.44 0.00 0.00 0.00 0.00 0.00

Socio-economic and demographic

Total Expenditure ($2011 PPP) 9842.66 9005.16 3323.36 4917.03 7491.50 11729.88 18166.15
Electricity Price ($2011 PPP / kWh) 0.15 0.15 0.07 0.08 0.12 0.18 0.25
Urbanisation Share 0.09 0.12 0.00 0.01 0.06 0.11 0.20
Home Ownership (Yes = 1) 0.80 0.40
Household Size 3.86 1.58 2.00 3.00 4.00 5.00 6.00
No Education (Yes = 1) 0.15 0.36
Primary Education (Yes = 1) 0.33 0.47
Secondary Education (Yes = 1) 0.40 0.49
Post Education (Yes = 1) 0.12 0.32
Age of Household Head 45.94 12.39 30.00 37.00 45.00 54.00 63.00
Female Household Head (Yes = 1) 0.10 0.30

Other electrical appliances

Refrigerator (Yes = 1) 0.54 0.50
Television (Yes = 1) 0.12 0.33
Computer (Yes = 1) 0.18 0.39

Notes: Descriptive statistics are computed survey weights.
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Table S7: Weighted descriptive statistics — India

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 1175.36 880.37 408.83 630.30 964.21 1439.28 2129.01
Air-conditioning (Yes = 1) 0.07 0.25

Climate and weather

CDD (100s) 27.63 5.13 22.16 25.63 27.92 30.30 33.86
CDD (100s) 28.41 5.22 22.81 26.32 28.64 31.08 34.74
HDD (100s) 1.51 4.26 0.00 0.00 0.36 1.58 3.68

Socio-economic and demographic

Total Expenditure ($2011 PPP) 5323.50 2899.94 2418.60 3483.65 4797.11 6455.21 8711.91
Electricity Price ($2011 PPP / kWh) 0.15 0.05 0.08 0.11 0.16 0.19 0.21
Urbanisation Share 0.03 0.05 0.00 0.00 0.01 0.03 0.09
Home Ownership (Yes = 1) 1.00 0.05
Household Size 4.05 1.63 2.00 3.00 4.00 5.00 6.00
No Education (Yes = 1) 0.52 0.50
Primary Education (Yes = 1) 0.29 0.45
Secondary Education (Yes = 1) 0.08 0.28
Post Education (Yes = 1) 0.10 0.30
Age of Household Head 50.61 11.55 36.00 42.00 50.00 58.00 65.00
Female Household Head (Yes = 1) 0.12 0.33

Other electrical appliances

Refrigerator (Yes = 1) 0.59 0.49
Television (Yes = 1) 0.94 0.23
Washing Machine (Yes = 1) 0.25 0.44

Notes: Descriptive statistics are computed survey weights.
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Table S8: Weighted descriptive statistics — Italy

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 2763.90 1551.01 1370.63 1774.26 2375.02 3339.28 4542.93
Air-conditioning (Yes = 1) 0.43 0.49

Climate and weather

CDD (100s) 4.37 1.38 2.70 3.61 4.21 5.13 5.41
CDD (100s) 6.24 1.62 4.34 5.55 6.05 7.32 7.69
HDD (100s) 20.49 5.26 16.14 16.33 20.54 23.27 25.80

Socio-economic and demographic

Total Expenditure ($2011 PPP) 36481.53 22754.50 14458.31 20603.46 30889.67 46113.30 65731.10
Electricity Price ($2011 PPP / kWh) 0.25 0.00 0.25 0.25 0.25 0.25 0.25
Urbanisation Share 0.10 0.07 0.05 0.05 0.07 0.15 0.15
Home Ownership (Yes = 1) 0.73 0.44
Household Size 2.30 1.23 1.00 1.00 2.00 3.00 4.00
No Education (Yes = 1) 0.03 0.17
Primary Education (Yes = 1) 0.48 0.50
Secondary Education (Yes = 1) 0.34 0.47
Post Education (Yes = 1) 0.15 0.36
Age of Household Head 55.73 12.61 50.00 50.00 50.00 70.00 70.00
Female Household Head (Yes = 1) 0.36 0.48

Other electrical appliances

Refrigerator (Yes = 1) 1.00 0.05
Television (Yes = 1) 0.98 0.14
Computer (Yes = 1) 0.64 0.48
Washing Machine (Yes = 1) 0.99 0.11

Notes: Descriptive statistics are computed survey weights. Notice that only in Italy age of the household members is
expressed in three categories (18-34, 35-64, 65+). To preserve the continuous variation in the variable in the pool sample,
we assign the same age (26, 50, 70) to each member within the same category.
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Table S9: Weighted descriptive statistics — Mexico

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 1020.00 1811.33 176.62 298.84 505.91 963.77 2087.03
Air-conditioning (Yes = 1) 0.15 0.36

Climate and weather

CDD (100s) 9.56 10.00 0.23 0.52 5.43 18.14 25.42
CDD (100s) 10.75 10.89 0.30 0.76 6.48 19.94 28.14
HDD (100s) 5.92 5.39 0.01 0.87 4.74 10.73 11.96

Socio-economic and demographic

Total Expenditure ($2011 PPP) 12944.10 12820.30 3606.75 5902.63 9589.12 15476.91 25013.37
Electricity Price ($2011 PPP / kWh) 0.27 0.04 0.23 0.25 0.30 0.30 0.30
Urbanisation Share 0.10 0.17 0.00 0.01 0.03 0.08 0.50
Home Ownership (Yes = 1) 0.70 0.46
Household Size 3.68 1.81 2.00 2.00 4.00 5.00 6.00
No Education (Yes = 1) 0.22 0.42
Primary Education (Yes = 1) 0.20 0.40
Secondary Education (Yes = 1) 0.25 0.44
Post Education (Yes = 1) 0.32 0.47
Age of Household Head 49.48 15.68 30.00 38.00 48.00 60.00 72.00
Female Household Head (Yes = 1) 0.28 0.45

Other electrical appliances

Refrigerator (Yes = 1) 0.88 0.33
Television (Yes = 1) 0.95 0.23
Computer (Yes = 1) 0.31 0.46
Washing Machine (Yes = 1) 0.70 0.46

Notes: Descriptive statistics are computed survey weights.
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Table S10: Weighted descriptive statistics — OECD-EU

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 5056.81 4652.70 1589.20 2398.25 3814.09 6356.81 9535.22
Air-conditioning (Yes = 1) 0.26 0.44

Climate and weather

CDD (100s) 2.62 2.49 0.50 0.81 1.39 4.15 6.91
CDD (100s) 2.96 3.12 0.36 0.65 1.33 4.91 8.23
HDD (100s) 21.75 7.20 13.36 17.15 21.91 25.48 30.75

Socio-economic and demographic

Total Expenditure ($2011 PPP) 34059.80 17364.85 14135.19 20405.94 31820.01 43205.67 59740.24
Electricity Price ($2011 PPP / kWh) 0.19 0.08 0.13 0.15 0.15 0.24 0.24
Urbanisation Share 0.14 0.16 0.02 0.03 0.08 0.21 0.51
Home Ownership (Yes = 1) 0.70 0.46
Household Size 2.75 1.15 1.00 2.00 3.00 4.00 4.00
No Education (Yes = 1) 0.00 0.00
Primary Education (Yes = 1) 0.21 0.40
Secondary Education (Yes = 1) 0.51 0.50
Post Education (Yes = 1) 0.28 0.45
Age of Household Head 45.02 13.34 26.00 34.00 45.00 57.00 63.00
Female Household Head (Yes = 1) 0.46 0.50

Other electrical appliances

Refrigerator (Yes = 1) 0.99 0.11
Television (Yes = 1) 0.99 0.12
Computer (Yes = 1) 0.99 0.07
Washing Machine (Yes = 1) 0.43 0.50

Notes: Descriptive statistics are computed survey weights.
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Table S11: Weighted descriptive statistics — OECD-Non EU

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 5690.74 5759.61 1863.46 2896.55 4531.95 6708.44 9929.03
Air-conditioning (Yes = 1) 0.76 0.43

Climate and weather

CDD (100s) 4.73 2.91 0.95 2.32 5.08 6.95 7.79
CDD (100s) 5.25 3.04 0.97 2.58 5.44 7.80 8.39
HDD (100s) 26.72 13.50 10.62 17.85 22.05 38.56 44.89

Socio-economic and demographic

Total Expenditure ($2011 PPP) 47073.66 27543.71 15778.72 26211.27 41219.45 59798.27 74837.71
Electricity Price ($2011 PPP / kWh) 0.20 0.08 0.17 0.18 0.19 0.21 0.21
Urbanisation Share 0.22 0.19 0.01 0.05 0.19 0.34 0.43
Home Ownership (Yes = 1) 0.65 0.48
Household Size 2.80 1.49 1.00 2.00 2.00 4.00 6.00
No Education (Yes = 1) 0.00 0.00
Primary Education (Yes = 1) 0.18 0.39
Secondary Education (Yes = 1) 0.54 0.50
Post Education (Yes = 1) 0.28 0.45
Age of Household Head 45.68 12.29 28.00 37.00 46.00 55.00 62.00
Female Household Head (Yes = 1) 0.47 0.50

Other electrical appliances

Refrigerator (Yes = 1) 0.99 0.10
Television (Yes = 1) 0.99 0.09
Computer (Yes = 1) 0.99 0.08
Washing Machine (Yes = 1) 0.57 0.50

Notes: Descriptive statistics are computed survey weights.
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Table S12: Weighted descriptive statistics — Pakistan

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 1791.21 2091.39 381.21 667.11 1238.92 2096.64 3526.16
Air-conditioning (Yes = 1) 0.09 0.28

Climate and weather

CDD (100s) 26.12 7.32 17.07 22.91 26.71 31.61 33.47
CDD (100s) 27.54 7.46 18.66 24.11 29.39 32.67 35.02
HDD (100s) 4.82 7.00 0.29 1.91 3.25 4.34 7.52

Socio-economic and demographic

Total Expenditure ($2011 PPP) 9665.84 7436.78 3906.88 5398.02 7761.23 11584.50 17033.55
Electricity Price ($2011 PPP / kWh) 0.33 0.00 0.33 0.33 0.33 0.33 0.33
Urbanisation Share 0.03 0.04 0.00 0.00 0.01 0.03 0.07
Home Ownership (Yes = 1) 0.84 0.37
Household Size 6.24 3.04 3.00 4.00 6.00 8.00 10.00
No Education (Yes = 1) 0.40 0.49
Primary Education (Yes = 1) 0.27 0.45
Secondary Education (Yes = 1) 0.22 0.41
Post Education (Yes = 1) 0.11 0.31
Age of Household Head 46.39 13.46 30.00 36.00 45.00 55.00 65.00
Female Household Head (Yes = 1) 0.10 0.31

Other electrical appliances

Refrigerator (Yes = 1) 0.57 0.50
Television (Yes = 1) 0.58 0.49
Washing Machine (Yes = 1) 0.65 0.48

Notes: Descriptive statistics are computed survey weights.
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Table S13: Weighted descriptive statistics — United States

Mean SD 10th 25th Median 75th 90th

Outcome

Electricity Quantity (kWh) 11249.02 8105.21 3541.56 5756.65 9082.81 14466.13 21419.88
Air-conditioning (Yes = 1) 0.92 0.26

Climate and weather

CDD (100s) 8.75 5.87 3.18 4.35 6.72 12.43 17.58
CDD (100s) 9.66 6.36 3.08 4.41 7.12 14.65 19.03
HDD (100s) 20.71 11.74 6.83 10.90 23.06 28.51 35.71

Socio-economic and demographic

Total Expenditure ($2011 PPP) 85994.79 103189.26 14112.00 30240.00 59507.52 105840.00 172200.00
Electricity Price ($2011 PPP / kWh) 0.12 0.03 0.10 0.10 0.11 0.12 0.19
Urbanisation Share 0.28 0.15 0.08 0.18 0.26 0.39 0.50
Home Ownership (Yes = 1) 0.64 0.48
Household Size 2.55 1.47 1.00 1.00 2.00 3.00 5.00
No Education (Yes = 1) 0.00 0.00
Primary Education (Yes = 1) 0.09 0.29
Secondary Education (Yes = 1) 0.48 0.50
Post Education (Yes = 1) 0.42 0.49
Age of Household Head 51.31 16.52 30.00 38.00 51.00 64.00 74.00
Female Household Head (Yes = 1) 0.48 0.50

Other electrical appliances

Refrigerator (Yes = 1) 1.00 0.06
Washing Machine (Yes = 1) 0.84 0.36

Notes: Descriptive statistics are computed survey weights.
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Figure S1: Country coverage
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Additional results

This subsection presents additional robustness tests of our baseline results as well as checks
about the regression model performance.

Table S14: Electricity in levels

Full Winsorized Trimmed
(1) (2) (3) (4) (5) (6)

AC 1054.788∗∗∗ 632.936∗∗∗ 1028.591∗∗∗ 212.243 872.595∗∗∗ 205.995
(100.915) (232.097) (88.041) (215.466) (74.186) (163.037)

AC × CDD 30.966 93.403∗∗∗ 73.723∗∗∗

(36.219) (35.121) (25.259)
AC × CDD2 0.078 −1.642∗ −1.191∗

(0.947) (0.927) (0.643)

Controls YES YES YES YES YES YES
Correction Term YES YES YES YES YES YES
ADM-1 FE YES YES YES YES YES YES

R2 0.520 0.520 0.659 0.661 0.568 0.570
Mean Outcome (kWh) 2495.943 2495.943 2277.863 2277.863 2123.612 2123.612
Countries 25 25 25 25 25 25
Observations 682727 682727 682727 682727 616531 616531

Notes: Dependent variable: annual electricity consumption (kWh). ”Controls” include natural logarithm of electricity price,
weather and socio-economic and demographic variables. Regressions are conducted using survey weights. Standard errors
are clustered at the ADM1 level; *p < 0.10, **p < 0.05, ***p < 0.01.
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Table S15: The effect of air-conditioning on residential electricity demand — excluding Kenya

OLS OLS DMF DMF
(1) (2) (3) (4)

AC 0.597∗∗∗ 0.378∗∗∗ 0.361∗∗∗ 0.029
(0.032) (0.029) (0.031) (0.062)

AC × CDD 0.038∗∗∗

(0.010)
AC × CDD2 −0.001∗∗

(0.000)

Controls NO YES YES YES
Correction Term NO NO YES YES
ADM-1 FE YES YES YES YES

R2 0.671 0.729 0.729 0.731
Mean Outcome (kWh) 2511.099 2511.099 2511.099 2511.099
Countries 24 24 24 24
Observations 680013 680013 680013 680013

Notes: Dependent variable: annual electricity consumption (kWh). ”Controls” in-
clude natural logarithm of electricity price, weather and socio-economic and demo-
graphic variables. Regressions are conducted using survey weights. Standard errors
are clustered at the ADM1 level; *p < 0.10, **p < 0.05, ***p < 0.01.
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Table S16: The effect of air-conditioning on residential electricity demand — Leave-one-country-
out

Min 1st Quart. Median Mean 3rd Quart. Max
(1) (2) (3) (4) (5) (6)

Panel A: Weighted

AC 0.2371 0.3604 0.3614 0.3587 0.3666 0.3898

AC -0.0190 0.0246 0.0283 0.0287 0.0324 0.0562
AC × CDD 0.0102 0.0380 0.0384 0.0376 0.0389 0.0487
AC × CDD2 -0.0009 -0.0007 -0.0007 -0.0006 -0.0007 0.0001

Controls YES YES YES YES YES YES
Correction Term YES YES YES YES YES YES
ADM-1 FE YES YES YES YES YES YES

Panel B: Unweighted

AC 0.3162 0.3665 0.3667 0.3664 0.3674 0.4252

AC -0.1990 -0.0341 -0.0313 -0.0309 -0.0304 0.0649
AC × CDD 0.0187 0.0333 0.0338 0.0334 0.0339 0.0425
AC × CDD2 -0.0008 -0.0005 -0.0005 -0.0005 -0.0005 -0.0002

Controls YES YES YES YES YES YES
Correction Term YES YES YES YES YES YES
ADM-1 FE YES YES YES YES YES YES

Notes: Dependent variable: natural logarithm of annual electricity consumption (kWh). ”Controls”
include natural logarithm of electricity price, weather and socio-economic and demographic variables.
In Panel A regressions are conducted using survey weights. In Panel B regressions are unweighted.
Standard errors are clustered at the ADM1 level; *p < 0.10, **p < 0.05, ***p < 0.01.
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Table S17: Instrumenting electricity prices using shares of fuel generating capacity

DMF 2SLS DMF 2SLS
(1) (2) (3) (4)

AC 0.339∗∗∗ 0.350∗∗∗ 0.358∗∗∗ 0.370∗∗∗

(0.040) (0.042) (0.032) (0.032)
Log(P) −0.530∗∗∗ −0.724∗∗∗ −0.393∗∗∗ −1.448∗∗

(0.069) (0.106) (0.039) (0.653)

Controls YES YES YES YES
Correction Term YES YES YES YES
ADM-1 FE NO NO YES YES

Kleibergen-Paap Wald test 89.815 1.670
R2 0.627 0.635 0.729 0.711
Mean Outcome 2455.311 2455.311 2514.137 2514.137
Countries 25 25 25 25
Observations 692718 673212 682727 663221

Notes: Dependent variable: logarithm of electricity consumption (kWh). ”Controls” include
weather and socio-economic and demographic variables. To construct the instrument we
download spatial data on power generation information from the Global Power Plant Database
This is an open source database of power plants worldwide, covering more than 30k power
plants from 167 countries. It includes both thermal and renewable plants. For each power
plant data provides location, plant capacity (MW) and fuel type, among others. We use infor-
mation on capacity to build the share of the total capacity available from each fuel type for each
administrative unit. That is, for administrative unit a we compute for each fuel f the follow-
ing share: Sharea f = (Capacitya f /Total Capacitya). Regressions are conducted using survey
weights. Standard errors are clustered at the ADM1 level; ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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Table S18: The role of solar power generation — Country FE

DMF DMF DMF DMF DMF DMF DMF DMF
(1) (2) (3) (4) (5) (6) (7) (8)

AC 0.526∗∗∗ 0.334∗∗∗ 0.550∗∗∗ 0.334∗∗∗ 0.504∗∗∗ 0.333∗∗∗ −0.006 0.332∗∗∗

(0.058) (0.033) (0.062) (0.033) (0.056) (0.033) (0.205) (0.032)
asinh(PV Generation) 0.001 0.029∗

(0.006) (0.017)
1(PV Gen. > Median) 0.100∗∗∗ 0.339∗∗∗

(0.035) (0.112)
asinh(PV Capacity) −0.002 0.025

(0.007) (0.021)
PVOUT −0.137∗∗ −0.208

(0.056) (0.200)
AC × asinh(PV Generation) −0.032∗∗∗

(0.008)
AC × 1(PV Gen. > Median) −0.247∗∗∗

(0.065)
AC × asinh(PV Capacity) −0.034∗∗∗

(0.009)
AC × PVOUT 0.092∗

(0.052)
Log(P) −0.402∗∗∗ −0.450∗∗∗ −0.405∗∗∗ −0.469∗∗∗ −0.401∗∗∗ −0.440∗∗∗ −0.398∗∗∗ −0.180

(0.085) (0.076) (0.088) (0.069) (0.085) (0.078) (0.087) (0.405)
Log(P) × asinh(PV Generation) 0.019∗∗

(0.009)
Log(P) × 1(PV Gen. > Median) 0.151∗∗

(0.061)
Log(P) × asinh(PV Capacity) 0.019∗

(0.010)
Log(P) × PVOUT −0.053

(0.107)

Correction Term YES YES YES YES YES YES YES YES
Country FE YES YES YES YES YES YES YES YES
Controls YES YES YES YES YES YES YES YES

R2 0.724 0.723 0.724 0.724 0.724 0.723 0.724 0.724
Mean Outcome 2439.091 2439.091 2439.091 2439.091 2439.238 2439.238 2439.091 2439.091
Countries 25 25 25 25 25 25 25 25
Observations 692710 692710 692710 692710 692718 692718 692710 692710

Notes: Dependent variable: logarithm of electricity consumption (kWh). ”Controls” include climate, and weather and socio-economic and demographic variables. Regres-
sions are conducted using survey weights. Standard errors are clustered at the ADM1 level; ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
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Figure S2: Bias in AC prevalence between survey data (pre-2020).
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Figure S3: Bias in total household electricity consumption between survey data (pre-2020) and
first projection timestep (2020).

Figure S4: Marginal effects of air-conditioning ownership on electricity consumption by country.
Estimates are obtained from country-specific models, including Germany. Countries are ordered
based on their total expenditure per capita. Confidence intervals depict statistical significance
level at 95%.
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Figure S5: Marginal effects of air-conditioning ownership on electricity consumption by coun-
try. Estimates are obtained from country-specific models, including Germany. Countries are
ordered based on their total expenditure per household. Confidence intervals depict statistical
significance level at 95%.

Figure S6: Marginal effects of air-conditioning ownership on electricity consumption by coun-
try. Estimates are obtained from country-specific models, including Germany. Countries are
ordered based on their total expenditure per capita from World Bank. Confidence intervals de-
pict statistical significance level at 95%.
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