Inequalities in global residential cooling energy use to 2050

Giacomo Falchetta^{2,3,4} Filippo Pavanello^{1,2,3} Enrica De Cian^{2,3} Ian Sue Wing⁵

¹Department of Economics, University of Bologna

²Department of Economics, Ca' Foscari University of Venice

³ECIP Division, Euro-Mediterranean Center on Climate Change (CMCC)

⁴International Institute for Applied Systems Analysis

⁵Department of Earth & Environment, Boston of University

MRMM Meeting

11th October 2023

What will happen to (local) air-conditioning adoption and the consequent electricity consumption?

<u>Objective</u>: Produce the first global gridded data set (0.25° × 0.25°) of future residential air-conditioning adoption (extensive) and use (intensive) for different scenarios

How:

- \hookrightarrow Collect household survey data combined with historical climate information (ERA5) \Rightarrow training set
- \hookrightarrow Two-stage household level Random Forests model
- \hookrightarrow Collect gridded projections data of all the included drivers consistent with CMIP6 RCP-SSP

What we do: simple scheme

Methods

- Top and bottom 1% observations trimmed to winsorise data
- $\cdot\,$ The data set is sliced into $training\ set\ and\ test\ set$
- We run two Random Forests:
 - 1. Classification \Rightarrow air-conditioning adoption
 - 2. **Regression** \Rightarrow electricity quantity
- Predicted probabilities from classification enters into the second stage (Dubin and McFadden 1984)
- A broad array of **hyperparameters** are optimised using 10-fold cross-validation
- Model performances are evaluated using:
 - 1. Area under the ROC curve and Cohen's Kappa (classification) \Rightarrow perform well even when events are rare
 - 2. R-squared and MSE (regression)

Random Forest clearly **outperforms** all other ML methods

Table 1: 1st stage

Table 2: 2nd stage

		Карра	AUC	
Model	Set	mean	mean	
GLM	Training	0.64	0.80	
	Testing	0.64	0.80	
GAM	Training	0.63	0.80	
	Testing	0.63	0.79	
RF	Training	0.84	0.91	
	Testing	0.73	0.87	

		R-squared	MSE
Model	Set	mean	mean
LM	Training	0.51	0.69
	Testing	0.51	0.69
GAM	Training	0.59	0.58
	Testing	0.59	0.57
RF	Training	0.86	0.21
	Testing	0.75	0.35

Results: External Validity

Results: Gridded Projections

Results: Trends

CO₂ emissions (Mt) from electricity for air-conditioning

Region	2020	SSP126 (2050)	SSP245 (2050)	SSP370 (2050)	SSP585 (2050)
East Asia & Pacific Europe & Central Asia Latin America & Caribbean Middle East & North Africa North America South Asia Sub-Saharan Africa	75.1 (62.3-90.5) 16.1 (10.7-23) 15.7 (12.5-18.8) 3.6 (2.6-5) 196.7 (175.7-218.7) 1.3 (0.8-2.1) 4.1 (3.5-4.7)	102.8 (84.9-121.5) 16.5 (11.7-22.4) 14.9 (11.5-20) 8.6 (7.3-10.4) 89.4 (78.8-99.2) 23 (18-28.1) 5.9 (4.7-7)	159.4 (128.7-189.4) 27.8 (20.9-37.2) 29.3 (24.2-35.2) 12.6 (10.7-15.1) 251.4 (222.2-278.8) 16.9 (13.3-21.3) 9.9 (8.2-11.4)	101.4 (83-120.2) 24.1 (17-33.2) 29.1 (20.7-34.3) 9.2 (7.8-11.1) 236.4 (209.7-260.5) 3.5 (2.3-5.4) 4.7 (4.1-5.6)	242.9 (211.1-278.4) 49.2 (35.8-64.5) 54.6 (44.5-67.7) 26 (21.9-32.1) 333.9 (296.9-368.1) 58.8 (48.8-68.9) 15.2 (12-17.9)
Total	312.7 (268.1-362.8)	261.1 (216.9-308.7)	507.3 (428.1-588.3)	408.4 (344.6-470.3)	780.6 (671-897.7)

Implications: Cooling Gap

- Huge boost in global air-conditioning penetration from 24% up to 50% in 2050
- Even larger increase in electricity demand for cooling from 500 TWh up to 1600 TWh in 2050
- · Major implications for capacity requirements, power-sector emissions and heat adaptation inequality

Caveats:

- 1. No other cooling technologies considered
- 2. No causal interpretation in the second stage \Rightarrow this is a pure prediction exercise
- 3. ML methods are somehow a black-box \Rightarrow difficult to interpret the impact of each included variable

Discussion: Improving interpretability 1/2

Discussion: Improving interpretability 2/2

- · We provide a new global gridded-level data set on air-conditioning adoption and use
- We use this data set to provide evidence on:
 - 1. **inequality** in the access to heat adaptation
 - 2. feedback on CO₂ emissions
- Random Forest outperforms simpler methods, but less interpretability
- Our data set will be available to research community to stimulate
 - Integration of air-conditioning in IAMs, CGE models, and power system models
 - Tests of air-conditioning as a **mediator** of heat-related impacts when no information is missing