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This paper

What will happen to (local) air-conditioning adoption and the consequent electricity consumption?

Objective: Produce the first global gridded data set (0.25◦× 0.25◦) of future residential air-conditioning
adoption (extensive) and use (intensive) for different scenarios

How:

↪→ Collect household survey data combined with historical climate information (ERA5)⇒ training set

↪→ Two-stage household level Random Forests model

↪→ Collect gridded projections data of all the included drivers — consistent with CMIP6 RCP-SSP
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What we do: simple scheme
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Methods

• Top and bottom 1% observations trimmed to winsorise data

• The data set is sliced into training set and test set

• We run two Random Forests:

1. Classification⇒ air-conditioning adoption
2. Regression⇒ electricity quantity

• Predicted probabilities from classification enters into the second stage (Dubin and McFadden 1984)

• A broad array of hyperparameters are optimised using 10-fold cross-validation

• Model performances are evaluated using:

1. Area under the ROC curve and Cohen’s Kappa (classification)⇒ perform well even when events are rare
2. R-squared and MSE (regression)
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Results: Model Performance

Random Forest clearly outperforms all other ML methods

Table 1: 1st stage

Kappa AUC

Model Set mean mean

GLM Training 0.64 0.80
Testing 0.64 0.80

GAM Training 0.63 0.80
Testing 0.63 0.79

RF Training 0.84 0.91
Testing 0.73 0.87

Table 2: 2nd stage

R-squared MSE

Model Set mean mean

LM Training 0.51 0.69
Testing 0.51 0.69

GAM Training 0.59 0.58
Testing 0.59 0.57

RF Training 0.86 0.21
Testing 0.75 0.35
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Results: External Validity
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Results: Gridded Projections
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Results: Trends
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Implications: Emissions

CO2 emissions (Mt) from electricity for air-conditioning

Region 2020 SSP126 (2050) SSP245 (2050) SSP370 (2050) SSP585 (2050)

East Asia & Pacific 75.1 (62.3-90.5) 102.8 (84.9-121.5) 159.4 (128.7-189.4) 101.4 (83-120.2) 242.9 (211.1-278.4)
Europe & Central Asia 16.1 (10.7-23) 16.5 (11.7-22.4) 27.8 (20.9-37.2) 24.1 (17-33.2) 49.2 (35.8-64.5)
Latin America & Caribbean 15.7 (12.5-18.8) 14.9 (11.5-20) 29.3 (24.2-35.2) 29.1 (20.7-34.3) 54.6 (44.5-67.7)
Middle East & North Africa 3.6 (2.6-5) 8.6 (7.3-10.4) 12.6 (10.7-15.1) 9.2 (7.8-11.1) 26 (21.9-32.1)
North America 196.7 (175.7-218.7) 89.4 (78.8-99.2) 251.4 (222.2-278.8) 236.4 (209.7-260.5) 333.9 (296.9-368.1)
South Asia 1.3 (0.8-2.1) 23 (18-28.1) 16.9 (13.3-21.3) 3.5 (2.3-5.4) 58.8 (48.8-68.9)
Sub-Saharan Africa 4.1 (3.5-4.7) 5.9 (4.7-7) 9.9 (8.2-11.4) 4.7 (4.1-5.6) 15.2 (12-17.9)

Total 312.7 (268.1-362.8) 261.1 (216.9-308.7) 507.3 (428.1-588.3) 408.4 (344.6-470.3) 780.6 (671-897.7)

9 / 14



Implications: Cooling Gap
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Discussion

• Huge boost in global air-conditioning penetration — from 24% up to 50% in 2050

• Even larger increase in electricity demand for cooling — from 500 TWh up to 1600 TWh in 2050

• Major implications for capacity requirements, power-sector emissions and heat adaptation inequality

• Caveats:

1. No other cooling technologies considered

2. No causal interpretation in the second stage⇒ this is a pure prediction exercise

3. ML methods are somehow a black-box⇒ difficult to interpret the impact of each included variable
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Discussion: Improving interpretability 1/2
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Discussion: Improving interpretability 2/2

13 / 14



Conclusions

• We provide a new global gridded-level data set on air-conditioning adoption and use

• We use this data set to provide evidence on:
1. inequality in the access to heat adaptation
2. feedback on CO2 emissions

• Random Forest outperforms simpler methods, but less interpretability

• Our data set will be available to research community to stimulate
• Integration of air-conditioning in IAMs, CGE models, and power system models
• Tests of air-conditioning as a mediator of heat-related impacts when no information is missing
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