Inequalities in global residential cooling energy use to 2050
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What will happen to (local) air-conditioning adoption and the consequent electricity consumption?

Objective: Produce the first global gridded data set (0.25°x 0.25°) of future residential air-conditioning
adoption (extensive) and use (intensive) for different scenarios

How:

s Collect household survey data combined with historical climate information (ERA5) = training set
— Two-stage household level Random Forests model

— Collect gridded projections data of all the included drivers — consistent with CMIP6 RCP-SSP
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What we do: simple scheme
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- Top and bottom 1% observations trimmed to winsorise data
- The data set is sliced into training set and test set

- We run two Random Forests:
1. Classification = air-conditioning adoption
2. Regression = electricity quantity
- Predicted probabilities from classification enters into the second stage (Dubin and McFadden 1984)

- A broad array of hyperparameters are optimised using 10-fold cross-validation

- Model performances are evaluated using:

1. Area under the ROC curve and Cohen’s Kappa (classification) = perform well even when events are rare
2. R-squared and MSE (regression)
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Results: Model Performance

Random Forest clearly outperforms all other ML methods

Table 1: 1st stage Table 2: 2nd stage
Kappa AUC R-squared MSE
Model Set mean mean Model Set mean mean
GLM  Training 0.64 0.80 LM Training 051 0.69
Testing 0.64 0.80 Testing 0.51 0.69
GAM  Training 0.63 0.80 GAM  Training 0.59 058
Testing 0.63 0.79 Testing 059 057
RF Training  0.84 091 RF Training 0.86 0.21
Testing 0.73 0.87 Testing 0.75 035
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Results: External Validity
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Results: Gridded Projections
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Results: Trends

AC penetration rate

AC electricity consumption (TWhiyr.)

Projected evolution of residential AC penetration
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Implications: Emissions

CO, emissions (Mt) from electricity for air-conditioning

Region

2020 SSP126 (2050)

SSP245 (2050) SSP370 (2050)

SSP585 (2050)

East Asia & Pacific

Europe & Central Asia
Latin America & Caribbean
Middle East & North Africa
North America

South Asia

Sub-Saharan Africa

Total

75.1 (62.3-90.5) 102.8 (84.9-121.5)
(

16.1 (10.7-23) 16.5 (11.7-22.4)
15.7 (12.5-18.8) 14.9 (11.5-20)
3.6 (2.6-5) 8.6 (7.3-10.4)
196.7 (175.7-218.7) 89.4 (78.8-99.2)
1.3(0.8-2.1) 23(18-28.1)
4.1(3.5-4.7) 5.9 (4.7-7)

312.7 (268.1-362.8) 261.1(216.9-308.7)

159.4 (128.7-189.4) 101.4 (83-120.2)
27.8(20.9-37.2) 24.1(17-33.2)

29.3 (24.2-35.2) 29.1(20.7-34.3)
12.6 (10.7-15.1) 9.2 (7.8-11.1)
251.4 (222.2-278.8) 236.4 (209.7-260.5)
16.9 (13.3-21.3) 3.5(2.3-5.4)

9.9 (8.2-11.4) 4.7 (4.1-5.6)

507.3 (428.1-588.3) 408.4 (344.6-470.3)

2429 (211.1-278.4)
49.2 (35.8-64.5)
54.6 (44.5-67.7)

26 (21.9-32.1)
333.9 (296.9-368.1)
58.8 (48.8-68.9)
15.2 (12-17.9)

780.6 (671-897.7)
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Implications: Cooling Gap

Sub-Saharan Africa

South Asia

North America

Middle East & North Africa

Latin America & Caribbean

Macroregion

I

Europe & Central Asia

East Asia & Pacific

GLOBAL

Pop.-weighted mean CDDs/yr. (thousands), historical climate
- ™ ) -+

0

- o =
Billion people without AC exposed to CDDs/yr.> regional avg.)

Scenario [_] 2020 [_] sspi26 [_] sspaas [] sspavo [ sseses

10/ 14



Discussion

- Huge boost in global air-conditioning penetration — from 24% up to 50% in 2050
- Even larger increase in electricity demand for cooling — from 500 TWh up to 1600 TWh in 2050
- Major implications for capacity requirements, power-sector emissions and heat adaptation inequality

- Caveats:

1. No other cooling technologies considered
2. No causal interpretation in the second stage = this is a pure prediction exercise

3. ML methods are somehow a black-box = difficult to interpret the impact of each included variable
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Discussion: Improving interpretability 1/2
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Discussion: Improving interpretability 2/2
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Conclusions

- We provide a new global gridded-level data set on air-conditioning adoption and use

- We use this data set to provide evidence on:

1. inequality in the access to heat adaptation
2. feedback on CO, emissions

- Random Forest outperforms simpler methods, but less interpretability

- Our data set will be available to research community to stimulate

- Integration of air-conditioning in IAMs, CGE models, and power system models
- Tests of air-conditioning as a mediator of heat-related impacts when no information is missing
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