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Abstract

As global temperatures rise, the unequal access to residential cooling technologies, es-
pecially air-conditioning, poses a critical challenge for heat adaptation in developing coun-
tries. To mitigate this disparity, affordable alternatives like evaporative coolers have been
proposed. However, the extent to which they provide protection against extreme heat is
uncertain. This paper investigates the inequality in heat adaptation, examining the effective-
ness of alternative cooling technologies in mitigating mortality impacts from extreme heat
in India for the period 2014-2019. Our empirical results highlight a critical trade-off in heat
adaptation. While we find that the expensive air-conditioning proves to be highly effective in
reducing temperature-related mortality, its ownership and use remains low, predominantly
limited to high-income cities. In contrast, many Indian households, including low-income
ones, purchase and use cheaper evaporative coolers, which we estimate offer reduced pro-
tection against heat stress. Our analysis then reveals that heat adaptation technologies have
collectively reduced heat-related deaths by 21%, generating an annual gross welfare gain of
$32 billion. Notably, the wide prevalence of evaporative coolers contributes to two-thirds
of these benefits. Yet, our counterfactual scenario demonstrates that air conditioners, if as
widespread as evaporative coolers, could have prevented 47% of the heat-related deaths. We
conclude showing that subsidising air-conditioning is a cost-effective way to reduce heat-
related mortality in India.
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1 Introduction

As global temperatures rise, the impact of extreme heat on human health and well-being be-
comes increasingly concerning. High temperatures have been indeed linked to a range of ad-
verse effects.1 A related literature highlights households’ attempts to shield themselves from
extreme heat exposures by using cooling technologies, particularly air conditioners (Davis and
Gertler, 2015; De Cian et al., 2019; Davis et al., 2021; Pavanello et al., 2021). Air-conditioning
provides thermal comfort by moderating indoor temperatures, which has the protective effect
of reducing adverse health and well-being effects associated with heat exposures (Barreca et al.,
2016; Park et al., 2020; Somanathan et al., 2021; Hua et al., 2022).

Yet, especially in developing countries, credit constraints limit the adoption of expensive
cooling appliances such as air-conditioning units, resulting in highly uneven access to cooling
and its associated benefits. To address this disparity, more affordable alternatives like evapora-
tive coolers have emerged, offering potential solutions to bridge the cooling gap. However, the
level of perfect substitution between the two technologies remains unclear. Evaporative coolers do
not reduce indoor temperatures to the same degree as air-conditioning units, and they cannot
maintain precise temperature control in most climates.2 The upshot is the potential for tech-
nological inequality, whereby poorer households with limited access to effective cooling tech-
nologies end up systematically more vulnerable to heat-related threats to health and well-being.
Understanding the consequences of this phenomenon is crucial to the design of interventions
that can effectively address the challenges of adapting to heat in ways that ensure equitable
access to the health-protective benefits of cooling.

This paper provides the first empirical evidence of the trade-off between the cost and health
protection of different technologies for adapting to extreme heat. To do so, we combine a rich
high-frequency longitudinal household-level survey data set with district-level mortality data
and high-resolution meteorological information in India for the period 2014-2019. The empirical
analysis is divided into four parts.

In the first part we employ micro fixed-effects regressions to examine the heterogeneous tech-
nological adaptation responses of Indian households to extreme heat. Our findings indicate that
the majority of households still lack the means to adapt through access to any form of cooling
technology. However, over our sample period we observe rapid increases in the penetration of
cooling technologies, driven mainly by economic development, including rising incomes and
reliable electricity supplies. Despite this overall trend, important differences exist across house-
holds. When we observe such adaptation, only high-income urban households purchase air-
conditioning, while low- and middle-income households living in the warmer regions primarily
rely on the more affordable coolers.

The second part shows how the choice of the cooling technology modulates households’
electricity consumption behaviour, particularly in response to ambient high temperature ex-
tremes. To do so, we test how plausibly exogenous shocks in daily temperature distribution
affect household monthly electricity consumption. Our quasi-experimental identification relies
on the exogenous nature of short-term weather variations within the same unit of observation.
Once we control for all time-invariant differences between units and all common differences be-
tween time periods, these variations are akin to random draws from the climate distribution,
making them unexpected (Hsiang, 2016). We so estimate that on average, relative to a day with
an average temperature of 17-20 °C, an additional ≥ 35 °C day is associated with an increase

1The non-market costs of extreme heat include impacts on mortality (Barreca et al., 2016; Burgess et al., 2017; Yu
et al., 2019; Carleton et al., 2022; Liao et al., 2023; Weinberger et al., 2020; Asseng et al., 2021), morbidity (Basu and
Samet, 2002; Sun et al., 2021), mental health (Burke et al., 2018; Hua et al., 2022; Mullins and White, 2019; Nori-Sarma
et al., 2022), mood (Baylis, 2020; Noelke et al., 2016), aggressive behaviour and crime (Ranson, 2014; Baysan et al.,
2019; Blakeslee et al., 2021), learning (Park et al., 2020) and labour productivity (Somanathan et al., 2021; Dasgupta
et al., 2021).

2Information on cooling appliances from the U.S. Department of Energy: https://www.energy.gov/

energysaver/home-cooling-systems
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in monthly electricity consumption of 0.53%. However, this response is highly heterogeneous
across income and installed technology. Households in the bottom decile of the income distri-
bution exhibit smaller responses (0.42%), while the responses of high-income households are
twice as large, and even greater if they live in urban areas. Similarly, households equipped with
an air-conditioning are almost three times more responsive to very hot days compared to those
relying on evaporative cooler. This is also because air conditioners are more energy intensive of
evaporative coolers. This marked difference persists even when focusing solely on high-income
families adopting different technologies. These findings remain robust across various specifica-
tion checks.

Our intensive margin results reinforce the patterns observed in technology adoption at the
extensive margin. Specifically, we find that households more inclined to own an air conditioner
also exhibit greater responsiveness to elevated temperatures. Moreover, even when they have
access to the the same technology, only richer households are really able to respond to extreme
heat. Notably, these results unveil the crucial role of the synergy of income with technological
choice for heat adaptation in emerging economies like India.

The third part quantifies the health protective benefits of air conditioners and coolers, charac-
terising their mediating effects on district-level annual mortality. We initially exploit presumably
quasi-random variation in temperature distributions to determine the impact of extreme heat on
mortality rates. We find that, relative to a day with average temperatures of 15-20 °C, an addi-
tional day at or exceeding 35 °C is associated with an increase in the annual mortality rate by 1%.
This effect is amplified during very humid days. Moreover, it is concentrated in rural areas and
districts with larger shares of low-income households. This suggests that poorer populations
face elevated risk of heat-related mortality. We then augment the regression model interacting
temperature with the annual penetration rates of both technologies. When we include adapta-
tion, we estimate that an air-conditioning unit is more than three times more effective than an
evaporative cooler at reducing temperature-related mortality. Focusing on days with tempera-
tures at or above 35 °C, we then compute how much of the uninteracted effect of these days is
reduced by the interaction terms with the technologies. In our preferred specification we find
that, on average, increasing air-conditioning prevalence by 1% reduces the mortality impact of
an additional at or above 35 °C day by 1.3%, whereas the same increase in cooler prevalence
yields only a 0.4% reduction. Consistent with the different modes of operation of the two tech-
nologies, we also find that in humid conditions air-conditioning is even more protective, while
coolers produce smaller thermal comfort.

Importantly, although quasi-random variation in air-conditioning and coolers ownership
rates is not available for our analysis, several robustness checks corroborate our results. Indeed,
we do not find any impact of the cooling appliances interacted with temperature below 30 °C,
suggesting that the adoption of these technologies does not relate with factors that determine
the overall mortality rate. Moreover, our findings about temperature, mortality and adaptation
are robust to a wide variety of specification tests, such as the inclusion of interactions between
temperature and income.

In the fourth part, we present estimates of lives saved through the adoption of these different
cooling technologies. Utilising a conservative estimate of the Value of Statistical Life (VSL) at
180 thousand dollars, we then assess the associated monetary benefits. Furthermore, we con-
duct a cost-benefit analysis by comparing the benefits stemming from saved lives with the costs
involved in a policy intervention aimed at subsidising air conditioners to achieve penetration
rates comparable to evaporative coolers. Over our sample period, we find that heat adaptation
has avoided 21% of the excess deaths due to temperature at or above 35 °C, generating annually
gross welfare gains equal to 32 billion dollars (2.1% of the annual GDP). Notably, the widespread
adoption of evaporative coolers contributes to two-third of these benefits, due to their presence
in more than five times as many households compared to air-conditioning systems. However,
our counterfactual analysis reveals that had the penetration rate of air conditioners equalled
that of evaporative coolers, air conditioners alone could have prevented a substantial 47%, cor-
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responding to a gross economic benefit of 73 billion dollars (4.9% of the annual GDP). Critically,
these benefits substantially outweigh the costs associated with subsidising air conditioners. This
result holds even when considering additional household electricity expenses and the social
cost of new CO2 emissions. These findings underscore the cost-effectiveness of subsidising air-
conditioning as a policy measure to mitigate heat-related mortality in the Indian context.

Related Literature.— Our results contribute to several strands of literature. We provide new ev-
idence about the adaptation opportunities that are available in response to climate change with
existing technologies (Barreca et al., 2016; Davis and Gertler, 2015; Auffhammer and Schlenker,
2014; Auffhammer and Mansur, 2014). We also contribute to the literature on inequality in heat
adaptation (Davis and Gertler, 2015; Davis et al., 2021; Pavanello et al., 2021; Mastrucci et al.,
2019). While income inequality is a key determinant of disparities in access to air-conditioning
(Davis and Gertler, 2015; Davis et al., 2021; Pavanello et al., 2021; Romitti et al., 2022), we shed
light on the additional technological layer of this issue. The important implication is that when
households attempt to adapt to heat exposures, income constraints can limit the scope of feasible
actions to those that yield only modest benefit, resulting in an unequal distribution of residual
mortality risk. Moreover, differently from what the literature have done so far, our data feature
allows to explore not only how the technology are distributed across households — the cross-
sectional variation —, but also what determines its adoption — the within-household variation.
This provides new insights about what drives the cooling demand in developing countries.

Our paper also estimates temperature-related response functions, which in developing coun-
tries are very limited due to data availability and reliability issues.

First, we shed light on the channels through which cooling adaptation drives residential
electricity consumption responses to temperature (Deschênes and Greenstone, 2011; Davis and
Gertler, 2015; Auffhammer, 2022). Our household-level estimates complement those of Colelli
et al. (2023) based on aggregate load data, and we exploit the richness of our micro data to high-
light heterogeneity in the relationship. Second, we contribute to the burgeoning literature on
temperature as a driver of mortality (Barreca et al., 2016; Carleton et al., 2022; Burgess et al.,
2017; Liao et al., 2023). While we are not the first to characterise the relationship between heat
and mortality in India — Burgess et al. (2017) do so using annual district-level mortality data
for 1957-2001 —, we provide updated responses for the period 2014-2019.3 Moreover, we also
introduce humidity as a key driver of mortality in India, showing that most of the deaths due
to heat occur during extreme hot and humid days. Finally, whereas Burgess et al. (2017) focuses
on bank expansion as a mediator of the impact of temperature on mortality, our paper aims at
isolating a different form of adaptation.

Our work also closely relates to the few studies that combine empirical analysis of both the
impacts of temperature extreme on mortality and the related-heat adaptation. On the one hand,
Deschênes and Greenstone (2011) and Yu et al. (2019) document the relationship between daily
temperatures and annual mortality rates and daily temperatures and annual residential energy
consumption in the United States and in China respectively. However, in their study the two
dose-responses are only studied separately. On the other hand, Barreca et al. (2016) combines
information on adaptation, particularly air-conditioning, daily temperatures, and state-level
monthly mortality rates in the United States. They find that the diffusion of residential air con-
ditioning has reduced hot day–related fatalities by 80% in the United States. We mainly differ
from this study as (i) we provide a more comprehensive analysis of heat adaptation responses,
exploring heterogeneities across margins, income and technologies; (ii) we compare the protec-
tive effects of two alternative cooling technologies, shedding light on the existing trade-offs in
the choice of the technology; and (iii) we emphasise how income levels profoundly shape the
distribution of the benefits arising from cooling technologies across the population. Notably,
Barreca et al. (2016) also proposes a measure of welfare gains coming from heat adaptation,

3Burgess et al. (2017) digitises mortality data from various issues of the publication Vital Statistics of India, which,
as of today, are only available from 2009.
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particularly through the adoption of air-conditioning.4 Our estimates of such welfare improve-
ments align closely with theirs, reinforcing the robustness and relevance of our findings.

Finally, our work has crucial policy implications. Our results unveils an overlooked form of
inequality in accessing cooling technologies. The technological inequality exacerbates the chal-
lenges faced by policymakers who strive to promote sustainable cooling for all, as it perpetuates
a situation where households with limited means must make trade-offs between affordability
and the efficacy of cooling technologies.

The remained of the paper is structured as follows. Section 2 provides a background about
extreme heat and adaptation in India. Section 3 presents an adaptation theoretical framework
that guides the empirical analysis. Section 4 describes the data. Empirical results are discussed
in sections 5 to 7. Section 8 discusses the welfare and policy implications of our findings. Last
section concludes our work.

2 Heat Extremes and Residential Cooling in India

Temperatures in India have risen by 0.7 °C between 1901 and 2018, thereby changing the climate
in India (Chakraborty et al., 2020). As a consequence, India is also facing unprecedented extreme
heat periods. Between March and May 2022 severe heatwaves were recorded in India, with
temperature reaching 51 °C. With future global warming, heatwaves like this will become even
more common and hotter. At the global mean temperature scenario of +2°C such heatwaves
would become an additional factor of 2-20 times more likely and 0.5-1.5°C hotter compared to
2022 Zachariah et al. (2022).

These extreme temperatures are already posing clear and present dangers, particularly in
rural areas (Burgess et al., 2017). Deaths caused due to heat in India increased by 55% between
2000-2004 and 2017-2021 (Romanello et al., 2022). For instance, the 2015 heatwave alone claimed
more than 2,500 Indian lives.5 Under a business-as-usual scenario with no mitigation effort
(RCP8.5), even with adaptation extreme heat would pose 60 deaths per 100,000 people per year,
a rate as high as the death rate from all infectious diseases in India today (Carleton et al., 2022).

In response to the threats posed by extreme heat, Indian households are increasingly turning
to cooling energy solutions. High summer temperatures in the north, and high humidity levels
in the west and south are driving this growth, along with rapid increase in disposable incomes.
The two primary cooling technologies utilised are evaporative coolers and air conditioning sys-
tems, each with distinct characteristics.

Evaporative coolers offer a more affordable option compared to air conditioning systems.6

They work passing outdoor air over water-saturated pads, and as the water in the pads evap-
orates, it reduces the air temperature. Operating on the basis of a power source and water
supply, evaporative coolers do not require complex installation procedures or extensive duct-
work. They so consume less electricity and have lower upfront costs. These advantages have
contributed to their popularity among Indian households, with an average penetration rate of
33% in 2019.7 Furthermore, the efforts to improve electricity accessibility in remote locations of
the country have further increased their demand, even in rural regions (28%) and among lower-
income households (15%). In terms of performance, coolers are effective in dry climates and can
provide localised cooling for specific areas or rooms. However, they cannot cool rooms as much
as air conditioners, and, critically, they perform badly in regions with high humidity.

4Barreca et al. (2016) identifies welfare improvement as the surplus gain by computing the area between the de-
mand curves of adopters and non-adopters of air-conditioning. Deschênes and Greenstone (2011) also quantifies a
heat-related welfare measure. However, in their work they determine the welfare loss (willingness-to-avoid) associ-
ated with a climate change-induced increase in temperatures.

5However, in India vital statistics are known to be under-reported (Romanello et al., 2022).
6The average purchasing costs of an air conditioner and evaporative cooler are 35 and 6 thousand rupees respec-

tively.
7Authors’ own calculation.
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On the other hand, air conditioning systems entail higher upfront costs and consume more
electricity than coolers. They work through the application of a refrigerant gas and a compressor
that cools the surrounding air down in an air-recirculation process. Moreover, they require pro-
fessional installation, involving indoor and outdoor units, refrigerant piping, electrical connec-
tions, and potentially ductwork. In turn, they can reduce air temperature more than evaporative
coolers. They offer comprehensive and consistent cooling throughout the day. They enable pre-
cise temperature control, dehumidify the air, and are capable of cooling larger spaces. Moreover,
they are suitable for various climates, encompassing both dry and humid regions.

The air-conditioning market has also been growing fast at the rate of 15-20% annually (AEEE,
2015), with imports value of air conditioners almost doubled in the last decade (Figure A1). Ac-
cording to IEA, by 2050, around 2/3 of the world’s households could have an air conditioner,
and India, together with China and Indonesia, will account for half of the total number (IEA,
2018). However, as of today at the household level air-conditioning still remains a luxury good.
Its penetration rate is low, reaching on average 6% in the country in 2019. Moreover, access to
air-conditioning is highly uneven, indicating that households’ ability to adapt to climate change
through the use of air-conditioning energy is linked to their socio-economic conditions. Only
richer people are indeed currently able to install the good, whereas for poorer people the access
to the technology remains prohibitive (Davis et al., 2021). Moreover, future increasing income
and temperatures are not expected to alone fill the cooling gaps, leaving 29–58 million house-
holds unable to properly adapt to extreme heat through air conditioners (Pavanello et al., 2021).

The Indian government has acknowledged this cooling emergency. It has also recognised
the importance of meeting this need effectively but in a sustainable manner, so that it does not
result in runaway climate change or an energy crisis. In 2019 the government has developed the
Indian Cooling Action Plan. This provides a 20-year perspective and outlines actions needed to
provide access to sustainable cooling and improve thermal comfort.8 India has so become the
first major country in the world to approve a national cooling policy. However, the plan has not
been implemented yet, and it is still not clear how the government concretely intends to pursue
its goals.

3 Theoretical Framework

In this section we provide a simple adaptation model, where in response to direct temperature-
induced utility damages households simultaneously choose how much cooling energy to con-
sume and own. The results from the maximisation problem are used to first discuss the source of
inequality in the cooling adaptation response, and then the potential trade-off between cooling
technologies with different investment costs and effectiveness. These model implications then
guide the subsequent empirical analysis.

We begin by assuming that a representative household solves the following utility maximi-
sation problem:

max
qS,qN ,k,x

{u = D[T, qS, k] · z[qN , x] | y ≥ p(qS + qN) + rk + x} (1)

where z is the net utility from electricity for other uses, qN and the composite (numeraire) good
x. Equation 1 also introduces a direct utility penalty D from exposure to temperatures, T, that
exceed the household’s optimum temperature, T∗:

D = 1− δ

{
1

A[qS, k]
T − T∗

}
(2)

8The Plan seeks to (1) reduce cooling demand across sectors by 20% to 25% by 2037-38; (2) reduce refrigerant
demand by 25% to 30% by 2037-38; (3) reduce cooling energy requirements by 25% to 40% by 2037-38; (4) recognise
“cooling and related areas” as a thrust area of research under national Science and Technology Programme; (v)
training and certification of 100,000 servicing sector technicians by 2022-23 (Cell, 2019).
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In Equation 2 the coefficient δ is marginal disutility of higher-than-optimal temperature, and A
is a cooling adaptation function that describes the attenuating effects of space conditioning on
ambient temperature, T, such that A−1T ≥ T∗. We assume that A is a Leontieff function that
represents the household’s decision to adjust the quantities of electricity for cooling (qS, at price
p) or space conditioning capital (k, at rental rate r):

A = a−1 min [qS, k] (3)

The parameter a (with units of °C/kWh) represents the amount of electricity consumed for cool-
ing that is not effectively used in reducing the disutility from ambient temperature. Moreover,
in our framework, both qS and k are expressed in kWh as they respectively signify the actual
electricity consumption for cooling and the maximum capacity of cooling appliances a house-
hold can consume. Consequently, k reflects the upper limit of cooling capacity based on the
owned appliances. This has two implications. Firstly, when qS < k, the household consumes
less cooling than its cooling appliances’ maximum capacity allows. Conversely, when qS = k,
the household is operating its cooling appliances at their full capacity. Secondly, any changes
in k correspond to adjustments in either the amount or the capacity of the cooling appliances
owned by the household. The piecewise character of adaptation then implies that we can write
the indirect utility function in two cases corresponding to the household’s adaptation at the in-
tensive margin qS (i.e., adjusting space conditioning energy use conditional on fixed durable
stocks) and the intensive-extensive margin k (i.e., adjusting both cooling appliances’ capacity
and space conditioning energy use simultaneously).

To solve the model, for simplicity, we assume z is a quasi-linear sub-utility:

z = x +
v

v− 1
q1− 1

v
N (4)

which implies that ∂z
∂x = 1. This simplifies the last FOC, and it leads to the solution of qN :

qN = p(−v)

This trick then allows us to derive closed-form expressions for the responses of qS and k to
temperature at the intensive and extensive margins:

q∗S =

√√√√δaT
(

y− rk− 1
1−v p1−v

)
p(1 + δT∗)

∝
√

T
√

y (5)

We can use this expression to back out the maximum intensive-margin space-conditioning
energy demand threshold, q∗S = k. In the limit,

k =
−δaTr +

√
δaT

(
r2 + 4

(
y− 1

1−v p1−v
)

p(1 + δT∗)
)

2p(1 + δT∗)
∝
√

T
√

y (6)

above this level,

q∗S = k∗ =

√
δaT

(
y− 1

1−v p1−v
)

(p + r)(1 + δT∗)
∝
√

T
√

y (7)

Equations 5 to 7 show that adaptation responses saturate with temperature and income,
suggesting a concave response of cooling, and so reflecting diminishing returns to adaptation.
Moreover, the solutions also highlight the importance of temperature-income interactions for
determining the cooling adaptation response function.
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We can also substitute these quantities in the disutility (Equation 2). For instance, for the case
qS = k, we get the following optimal disutility chosen by the representative household:

D∗ = 1− δ

√a
√

p + r√
y− 1

1−v p1−v

√
(1 + δT∗)

δ

√
T − T∗

 (8)

Equation 8 suggests that the disutility from ambient temperature is decreasing in income y,
and it is increasing in the cost of cooling appliances r, electricity prices p and the share of cooling
electricity lost a.

Finally, if we assume that there exists two type of cooling technologies θ, evaporative cooler
(C) and air conditioners (AC), this leads to a conditional maximisation problem, where we can
re-write the optimal disutility as follows:

D∗θ = 1− δ

√aθ

√
p + rθ√

y− 1
1−v p1−v

√
(1 + δT∗)

δ

√
T − T∗

 (9)

where we assume that the two technologies may only differ in effectiveness a and cost r.
Since we can safely take as given that evaporative cooler are cheaper than air conditioners (rC <
rAC), a household faces a technological trade-off to determine its optimal response to ambient
temperature only if evaporative cooler are less effective at bringing thermal comfort (aC > aAC).

In the empirical analysis, the focus is then threefold. First, we aim at identifying which type
of households are adapting and through which technology. We explore how the interaction
between temperature and income level shape the access and use to the two technologies. Second,
we estimate the marginal disutility to temperature, δ, for various level of temperature through
the mortality-temperature relationship. Finally, we determine whether the two technologies
differ at reducing thermal discomfort, aθ .

4 Data

This section presents the data utilised in our analysis.9 To address our research questions, we re-
quire data with several features. First, we need a household survey that provides information on
ownership of heat adaptation appliances and electricity consumption, as well as socio-economic
and demographic characteristics of households to also exploring the inequality dimension. Sec-
ond, we require data that allows us to determine the impact of temperature on mortality in
India, while also studying its heterogeneity effects across socioeconomic groups, and the miti-
gation effects of cooling adaptation. All the data sources must provide sufficiently disaggregated
geographical information that we can merge with meteorological data sets.

4.1 Household Data

Our primary data to study cooling adaptation is the Consumer Pyramids Household Survey
(CPHS) conducted by Center for Monitoring Indian Economy (CMIE) for the period 2014-2019.
CPHS provides a large and representative panel survey of Indian households, covering nearly
the whole of India. It employs stratified sampling to ensure representativeness at various level,
particularly national and regional level, and regions × urban status.

CPHS surveys each household every four month, and sampling is staggered so that a repre-
sentative 25% of all households are sampled each month. The survey provides information on
size, origin, and distribution of Indian households’ income and expenditures levels. Particularly,
we use data on electricity expenditure and income, which are reported at the monthly level. The

9Table A1 summarises which data set we use for each analysis.
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survey also collects information on households’ characteristics, housing, and owned assets at
each wave. This makes it possible to determine whether households have air conditioners and
evaporative coolers installed in their dwelling every four months.

We enrich the data set with information on electricity prices from the 2011 (67th round) Na-
tional Sample Survey (NSS). We use these data to compute electricity quantity of the CPHS
households, as CHPS only provides electricity expenditure data. NSS indeed provides the elec-
tricity prices paid by its interviewed households. We so aggregate these prices at the state ×
district × urban and state × district × rural levels, and we assign them to CHPS households.10

We finally actualise electricity prices to our survey period using a monthly wholesale price in-
dex for electricity from the Office of Economic Adviser - Department for Promotion of Industry
and Internal Trade.11

4.2 Mortality Data

To obtain evidence on the impact of temperature on mortality in India we collect district-level
information from the Indian Civil Registration System. Particularly, we digitise their public
reports on ”Vital Statistics of India” for the years 2014-2019. Each report provides tables with
the number of all-age all-causes deaths that occurred in each Indian district and state. It also
distinguishes between number of deaths occured in rural and urban areas.12

For the analysis, we are interested into district-level mortality rates rather than deaths counts.
To construct them, we get gridded-level population information from the Gridded Population of
the World (GPW), v4 (CIESIN, 2018). This provides estimates of population count for the years
2000, 2005, 2010, 2015, and 2020, consistent with national censuses and population registers. We
then aggregate cells at the district, and we exponentially interpolate population counts between
each five year-period in each district. Finally, we divide the number of deaths by population in
each district to get mortality rates. To get urban and rural populations, we multiply the total
populations by the state-level urbanisation rates obtained from 2011 Census.13

4.3 Meteorological Data

Household and mortality data are merged with population-weighted14 meteorological data us-
ing the most disaggregated geographical information available, the district.

We compute gridded daily average temperature, specific humidity and total precipitation
data from ECMWF’s ERA5 historical climate reanalysis data set with a resolution of 0.25 arc-
degrees (Hersbach et al., 2020). Relying on information from weather stations, satellites, and
sondes, this reanalysis data is less prone to station weather bias but might be biased via the
climate models that are used to generate a gridded product (Auffhammer et al., 2013). Fur-
thermore, this type of data set is increasingly being used in climate econometrics, especially in
developing countries, where the quality and quantity of weather data is limited.

We employ the daily information to construct several exposure measures at the monthly,
quarterly, and annual level, including temperature and humidity bins, and 24-degree Cooling
Degree Days (CDD).15

10When the information in NSS was not available in some state × district × urban/rural areas surveyed in CHPS,
we impute the average prices using state × urban and state × rural averages.

11The time series of the wholesale price index can be found at the following website: https://eaindustry.nic.
in/

12Each report also provides the distinction between male and female deaths. However, this information is not
always available for all the districts. For this reason, we prefer focusing on all-gender number of deaths.

13This means that we are not taking account changes over time of urbanisation rates, as well as differences across
districts.

14To weigh our climate data we again use gridded-level population information from the Gridded Population of
the World (GPW), v4 (CIESIN, 2018).

15Cooling Degree Days are defined as the sum of the degree-days above a certain threshold: CDD = ∑n
i=1(Ti − T).

As a threshold we impose 24 °C.
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As a robustness, we also collect gridded monthly average temperature and rainfall data at
0.5° resolution from the Climate Research Unit (CRU TS v4.05) of the University of East Anglia
(Harris et al., 2014).

4.4 Descriptive Statistics

Heat Adaptation.— Table 1 provides household-level representative descriptive statistics for the
whole India and by income quintile across our sample period. Our descriptive evidence reveals
that, on average, approximately one-third of Indian households own at least one evaporative
cooler, while air conditioners are relatively rare, with an ownership rate of 6%. However, income
levels significantly influence the ownership rates of both appliances, with wealthier households
showing higher rates of ownership.

Furthermore, the two technologies exhibit different behaviors across the income distribution.
Evaporative coolers demonstrate characteristics of a normal good, as they are purchased even by
some of the poorest households (11%), and the ownership rate steadily increases — by around 10
percentage points –— across income quintiles. In contrast, air-conditioning resembles a luxury
good, as the majority of households do not have air conditioners installed (1-3%), and only high-
income households can afford this technology, with an ownership rate of 21%.

Consistently with the distribution of the two technologies, wealthier households also con-
sume 20 to 60 kWh of electricity more per month compared to all other households.

Table 1: Descriptive Statistics at the Household Level - Income Quintiles

CHPS

Air Conditioner Evaporative Cooler Electricity Quantity Income Urban Power
(Dummy) (Dummy) (kWh) (Rupee) (Dummy) Availability

Total 0.06 0.33 104.85 16021.86 0.33 21.73
(0.23) (0.47) (99.22) (18849.37) (0.47) (3.78)

Income Quintile:

1st 0.01 0.11 62.53 6866.80 0.14 21.43
(0.07) (0.25) (36.71) (3209.29) (0.28) (3.25)

2nd 0.01 0.24 80.59 9876.61 0.23 21.09
(0.10) (0.39) (56.30) (5766.23) (0.38) (3.76)

3rd 0.02 0.34 97.10 12794.75 0.30 21.67
(0.13) (0.46) (80.48) (8734.34) (0.45) (3.74)

4th 0.03 0.42 117.92 17183.12 0.39 22.08
(0.19) (0.52) (109.06) (12989.78) (0.51) (3.68)

5th 0.21 0.54 166.12 33382.87 0.59 22.35
(0.49) (0.60) (168.85) (39263.90) (0.59) (3.80)

N°Households 210560

Notes: Means and standard deviations (in parentheses) across the survey period are reported. Air-conditioning, evaporative
cooler, urban and power availability are at the four-monthly level. All other variables are at the monthly level. Survey weights for
country-level representativeness are applied.

An additional factor that potentially contributes to the disparity in cooling adaptation is
whether households reside in urban or rural areas.16 Within our sample, the majority of house-
holds (67%) are situated in rural areas, and these tend to be predominantly lower-income house-

16CMIE uses 2011 Census to define urban and rural areas. Particularly, an area with a population of minimum
5000, population density of at least 400 persons per square km, and at least 75% of the male working population in
non-agricultural occupations is defined as urban. The remaining is defined as rural.
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holds (70% to 86%). Conversely, wealthier households are more commonly found in urban set-
tings (59%). This discrepancy partly explains the higher prevalence of expensive air conditioners
among urban households, particularly in the fifth quintile (31%). In contrast, the more afford-
able evaporative coolers are consistently purchased, even in rural areas, and both urban and
rural families exhibit similar adoption curves along the income distribution (Table A2).

However, it is not solely income that can account for the patterns in cooling adaptation. Sig-
nificant differences in the quality of electricity supply, as measured by the hours of electric con-
nection availability per day, may emerge as an additional key determinant.17 The operation
of an air conditioner indeed necessitates a reliable grid connection. Since rural areas experience
more frequent disconnections (-1.5 hours) compared to urban regions, this disparity may further
explain the predominance of air conditioner purchases in cities. Contrary, evaporative coolers
do not have the same stringent requirements, and they can operate effectively even with less
reliable electricity grid.

Looking at the changes over time, Table A3 indicates the ownership of evaporative cooler
rapidly increases over our sample period, moving from 24% to 44%. The spread of air condi-
tioners also grows from 4% to 7%. However, on the one hand, almost only urban households
purchased air conditioners across the period — from 11% to 17%. On the other hand, the growth
in coolers’ adoption is almost equally driven by rural (+22 percentage points) and urban areas
(+17 percentage points). Increasing income and quality of electricity supply may explain the in-
creasing demand for both appliances, as there are no significant changes in the number of urban
and rural households.

Going more in detail on these trends, Figure A2 divide households in nine categories based
on long-term temperature conditions — expressed using CDD — and sample average income.
Two key findings emerge. First, the prevalence of evaporative coolers appears to be climate
sensitive. That is, they are mainly present in areas where temperatures are warmer on average.
Contrary, the distribution of air conditioner seems to be independent from the climatic condi-
tions. Second, the graph underlines the differences in the technological choice across income
levels. The spread of evaporative coolers is more rapid for low- and middle-income families in
warmer areas, whereas in percentage points the demand for air conditioners grows similarly to
the demand for coolers in high-income families.

Figure A3 then separates households based on their residence at the state level. The trends
across states accentuate the disparities in technological choices along the income distribution.
On one hand, high-income urban settings such as Chandigarh and Delhi demonstrate almost
full saturation of evaporative cooler ownership at the beginning of the sample period, while the
adoption of air conditioners quickly increases over the years, with an upsurge of more than 25
percentage points.18 Contrary, the other part of India is still in the process of catching up to
the saturation of demand for evaporative coolers. This highlights the variations in cooling tech-
nology preferences and access to higher-income households and urban areas compared to other
regions and income groups.

Mortality and Extreme Weather.— Moving to Table 2, this summarises the mortality rates,
extreme temperature variables, and precipitation, for the whole India, across India Zonal Coun-
cils, and at the beginning and end of our sample period. The average annual mortality rates
across the period 2014-2019 is 5.20 per 1,000 population, and this rate reaches 5.74 in 2019. The
highest mortality rates are registered in urban areas, and in the Central, Southern and Western
regions.

17In the CHPS data electricity access is about 100%, even in rural areas. This is because CMIE defines access to
electricity as given by any means (excluding battery). That is, it does not question whether the connection to the grid
is legal or illegal.

18To put it into perspective, in the United States between 1960 and 1970 air-conditioning saturation increased by
about 25% (Barreca et al., 2016). In Delhi ownership of air conditioners has increased by 30 percentage points in an
even shorter period.
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Extreme warm days (≥ 35) are on average infrequent (about 5 days per year) in the country.
However, they are significantly more frequent in Northern and Eastern areas, where we may
expect the identification of this effect. Critically, days with average daily temperature between 30
°C and 35 °C are instead very frequent (about 52 days per year), and more widespread across the
whole country. Interestingly, Southern regions, which are characterised by a tropical weather,
are significantly much less exposed to warm days, but they more exposed to more days with
high level of humidity.
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Table 2: Descriptive Statistics at the District Level - Mortality Rates and Extreme Weather

All-Age Mortality Rates ERA5

Total Rural Urban T(< 10 °C) T(30 °C - 35 °C) T(≥ 35 °C) Precipitation H(0 - 3 g/kg) H(≥ 18 g/kg)
(per 1,000s) (per 1,000s) (per 1,000s) (N° Days) (N° Days) (N° Days) (m) (N° Days) (N° Days)

Total 5.20 3.96 6.83 3.10 55.48 6.99 1.21 1.47 93.89
(5.48) (3.13) (10.69) (21.94) (30.66) (18.46) (0.60) (14.72) (61.42)

Region:

Northern 6.05 4.75 7.19. 28.06 59.50 9.02 0.92 9.13 63.01
(4.83) (3.37) (8.13) (60.75) (35.35) (17.11) (0.48) (39.81) (34.51)

Central 7.17 5.70 8.02 0.00 48.09 1.78 1.21 0.00 66.05
(5.51) (3.79) (10.40) (0.00) (36.08) (4.65) (0.59) (0.00) (72.24)

Eastern 3.92 3.07 5.19 1.75 65.98 10.80 1.08 0.78 93.44
(2.26) (2.73) (5.23) (11.07) (14.79) (8.74) (0.28) (10.90) (33.64)

North Eastern 3.93 3.12 5.33 0.00 49.52 1.96 1.48 0.00 148.54
(3.34) (2.24) (8.85) (0.00) (18.16) (3.77) (0.34) (0.00) (34.27)

Western 6.57 4.10 8.07 0.00 57.76 11.18 1.04 0.00 68.60
(8.99) (2.73) (15.55) (0.00) (29.65) (39.97) (0.45) (0.00) (54.45)

Southern 3.82 3.59 9.59 2.41 2.23 0.00 2.76 0.70 115.61
(5.72) (2.12) (16.58) (31.71) (6.63) (0.00) (1.35) (16.63) (113.72)

Year:

2014 5.03 3.82 6.59 3.26 59.22 6.53 1.11 1.57 81.18
(5.72) (3.09) (10.86) (23.48) (30.24) (18.12) (0.60) (15.80) (58.42)

2019 5.74 4.55 763.12 4.53 59.51 9.53 1.39 1.47 97.51
(5.38) (3.02) (10.98) (22.34) (28.95) (19.36) (0.59) (14.17) (60.65)

N°Districts 657

Notes: Means and standard deviations (in parentheses) across the analysed period are reported. Population weights for country-level representativeness are applied.
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5 Extensive Margin: The Choice of the Cooling Technology

In this section we infer the interplay between temperature and income in the choice of the heat
adaptation technology across Indian households. Moreover, we show the role of the other socio-
economic and demographic drivers in determining the choice of the technology.

5.1 Empirical Framework

To study the household’s investment decision on cooling technologies, we separately estimate
the following linear probability model (LPM) for each appliance:

Caiw = γ0 + β1CDDd(i)w + β2 Iiw + β3(CDDd(i)w × Iiw) + β4g(Pd(i)w)+

+ λXiw + µk + δw + θs(i)w + θ2
s(i)w

2 + ζiw
(10)

where the outcome variable is a dummy 0 or 1 indicating whether a household i owns at least
an unit of the appliance a — either cooler or air conditioner — in wave w; g(Pd(i)w) is a second-
degree polynomial of cumulative precipitations experienced by household i in district d during
the quarter w; and ζiw is the error term, which we cluster at the district level.

To measure temperature, we use Cooling Degree Days (CDD) as they are standard measure-
ments designed to reflect the demand for cooling. However, the crucial point is that we do not
use contemporaneous CDD. Contrary, CDDd(i)w is a 10-year moving average of quarterly CDD
in district d in the decade before the surveyed quarter w,19 capturing households’ medium-term
expectations of climatic conditions where they live. The extensive margin — the investment de-
cision — is a slow adjustment process. This is because cooling appliances have long lifetimes,
and so households make the investment based on expectations about climatic conditions, i.e.,
average weather over long periods (Auffhammer and Mansur, 2014; Cohen et al., 2017).20

Equation 10 also includes the natural algorithm of household i’s income across each wave
period, Iiw, and an interaction with the moving average of CDD to determine how income levels
shape the response of households to changes in climatic conditions.

The specification in Equation 10 also includes unrestricted wave fixed-effects, δw. These fixed
effects control for time-varying differences in the dependent variable that are common across
Indian regions. Since shocks and unobserved time-varying factors may vary across states in
India, we also include state-level quadratic trends, θs(i)w and θs(i)w2.

Furthermore, we control for a vector of time-varying and -invariant households’ characteris-
tics, for Xiw. This includes a dummy variable indicating whether a household i lives in an urban
area, household head’s education, age, and gender, roof material of the dwelling, and leave-one-
out averages21 of the power availability22 (in hours) and ownership of generators in the area23

where a household i resides.
Importantly, our specification also carefully accounts for unobserved time-invariant hetero-

geneity µk. Unlike existing works, the unique feature of our data set allow us to investigate the
influence of climatic conditions not only on the prevalence of cooling appliances — the cross-
sectional variation across households, or the stock of appliances —, but also their actual adop-
tion — the within-household variation, or the flows of appliances. Based on how we model the
time-invariant unobserved heterogeneity, we can estimate the coefficients for each one of the
two dimensions.

19That is, for the quarter January-April 2014 cooling degree days are averaged for the same months across the
period 2003-2013

20Cohen et al. (2017) finds that in US households mostly rely on expectations about the past 7-8 years.
21We prefer to use local leave-one-out averages rather than household-level information to avoid simultaneity.
22Each household declares for how many hours per day they have electrical power in the dwelling. We use this

information as a proxy of power quality.
23We take the averages at the district-urban/rural-wave level.
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Critically, the choice about µk influences how we then interpret the resulting coefficients for
CDDd(i)w. When we model prevalence, we make use of state-level fixed effects, µs(i). We can
so document how the differences in expectations for the climate conditions between house-
holds has shaped the distribution of air-conditioning and evaporative cooler in India. Contrary,
when the focus is adoption, we use household fixed effects, µi, and we capture whether within-
household shocks in climatic expectations influences household’s investment decision.24

In this context, it is however worth noting at the outset the limitations of our data. The ideal
data set to shed light on the adoption decision would be a long panel of households spread
across different climate regimes that the econometrician was able to observe start out with no
cooling, and then progressively acquire various technologies in response to differential long-run
heat exposures. By contrast, our panel data set revisits households trimonthly over a compara-
tively short five-year period, at the beginning of which air conditioners and, particularly evap-
orative coolers, had already been acquired by a fraction of households. This makes difficult to
identify the causal effect of climatic conditions on adoption, as there is not sufficient variation
over time in the average weather conditions (Figure A2 and Figure A3).25

Given the rapid spread of the two heat technologies in our sample period, we then expect
economic development variables, such as income, to have a key role in the adoption of the two
technologies. However, for evaporative coolers we expect the effect of economic development
to be conditional on climatic conditions. That is, being the appliance already more spread in
warmer regions, economic development should drive adoption faster in these areas (Figure A2).
We provide a test for this hypothesis.

Symmetrically, the ideal data set to elucidate the determinants of the prevalence of cooling
appliances among Indian families is a large cross section of heterogeneous households spread
across different climates, or multiple such cross sections repeated over a long enough interval
that the econometrician can observe substantial locational differences in the spread of different
cooling technologies (Pavanello et al., 2021; Davis et al., 2021). Our data set well responds to
these requirements, and it allows to identify how climate conditions influence the distribution
of the cooling appliances across Indian households.

5.2 Results

Prevalence.— Table 3 presents the coefficients of CDD and income, when we model the preva-
lence of the cooling appliances.

Columns 1 and 2 show the results when the dependent variable does not distinguish the
type of cooling appliances that is owned. Columns 2 to 6 depict the same estimates for each
specific cooling appliance. Our estimates suggest that the distribution of evaporative cooler is
climate sensitive, and families living in warmer areas are more likely to own the appliance. We
find that a 100 degree-day increase in CDD is associated with an increase in the probability of
having an evaporative cooler by 1.45 percentage points. Column 5 also indicates that this effect
of CDD is increasing in income. This means that in warmer, and so more exposed to heat, areas
richer families are more likely to have coolers. Contrary, the prevalence of air conditioner does
not depend on climatic conditions, as the effect of CDD is small and not precisely estimated.
Moreover, the null effect of CDD is common across the income distribution.26

Our findings also highlight that household income has a large positive effect for both appli-
ances, with similar elasticities. This suggests the existence of inequality in the access to heat
adaptation: the likelihood of owning a cooling appliance is increasing in income. An increase

24With household fixed effects, all controls but power availability and ownership of generators are dropped from
the regression, as they do not vary over time.

25This is especially evident for air conditioners, where the variation we would capture through adoption would
mainly come from the cities of Delhi and Chandigarh (Figure A3).

26This is in line with anecdotal evidence from Avikal Somvanshi (Urban Lab, Centre for Science and Environment,
New Delhi) suggesting that in India air conditioners are mainly considered as a status good.
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by 10% in four-month income is associated with an increase in the probability that a household
owns an air conditioner by 0.59 percentage points, while in the probability of owning an air
cooler by 0.61 percentage points. Our estimates for air-conditioning are consistent with previ-
ous cross-sectional works on India (Davis et al., 2021; Pavanello et al., 2021), which suggest a
fundamental role of income.

Looking at the other coefficients (Table B1), we estimate statistical significant coefficients of
the linear term of precipitation only for coolers, highlighting that households living in more arid
regions are more likely to have an evaporative cooler. This is consistent with the technology
being more effective in dry conditions. Contrary, we do find large positive effect of urbanisation
only for air conditioners. Moving from a rural to an urban area is associated with an increase in
the probability of owning an air conditioner by 3.8 percentage points. This is in line with the de-
scriptive analysis suggesting that rural households are catching up urban households in terms
of ownership of coolers. In addition, we estimate that one-hour increase in the electricity power
available in the dwelling is associated with an increase in the probability of having evaporative
cooler by 1.3 percentage points, while the ownership of generators is a positive determinant of
the presence of the two appliances. This suggest that even when power is not reliable, having
generators may allow to run appliances in the dwelling. Our results also suggest a primary role
of demographic characteristics of the household. The saturation of both appliances is increas-
ing with age of the household head. Particularly for air conditioners, education also enhances
the probability of owning the technologies, whereas household size diminishes it. Findings on
gender instead suggest that the presence of a female family head does not affect the ownership
of the two appliances. Finally, estimates for roof materials — a proxy of housing quality —
highlight that both appliances are more likely to be found in more insulated houses.

Table 3: The Impact of Temperature and Income on the Prevalence of Cooling Appliances

Both Appliances Air Conditioner Evaporative Cooler

(1) (2) (3) (4) (5) (6)

CDD (100s) 0.0146*** -0.0373*** 0.0000375 -0.0101 0.0145*** -0.0423***
(0.002) (0.010) (0.001) (0.007) (0.003) (0.013)

Log(Income) 0.0863*** 0.0637*** 0.0592*** 0.0547*** 0.0611*** 0.0363**
(0.007) (0.010) (0.006) (0.006) (0.010) (0.015)

CDD × Log(Income) 0.00548*** 0.00107 0.00600***
(0.001) (0.001) (0.002)

Precipitations Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

R2 0.51 0.51 0.21 0.21 0.51 0.51
Observations 2442730 2442730 2442730 2442730 2442730 2442730

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. (1)-(6)
clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are conducted using survey weights. Results from the full regression are in Table B1.

Adoption.— The results for the adoption regressions are presented in Table 4. Our results are
consistent with our hypothesis that in our sample period the main driver of adoption is eco-
nomic development. We find that an average India household does not respond to shocks in
climatic expectations adopting any of the technology. Even if we estimate that the interaction
between income and climate is positive and significant for coolers, the magnitude is very small
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— for a high-income household a one-hundred increase in CDD increases the probability of
adopting air-conditioning by 0.01 percentage points. Contrary, income keep having a large ef-
fect, with a positive shock of 10% in income leading to an increase in the probability of adopting
air-conditioning and evaporative cooler by 0.13 and 0.35 percentage points respectively. More-
over, Table B2 shows that a positive shock in the power availability in the area where a household
lives positively affects the adoption of evaporative coolers, and the average share of households
with a generator remains a key driver for both appliances.

Table 4: The Impact of Temperature and Income on the Adoption of Cooling Appliances

Both Appliances Air Conditioner Evaporative Cooler

(1) (2) (3) (4) (5) (6)

CDD (100s) -0.000669 -0.00723** 0.000215 0.00151 -0.000767* -0.00943***
(0.000) (0.003) (0.000) (0.001) (0.000) (0.003)

Log(Income) 0.0413*** 0.0383*** 0.0134*** 0.0140*** 0.0348*** 0.0310***
(0.003) (0.003) (0.001) (0.002) (0.003) (0.003)

CDD × Log(Income) 0.000693** -0.000137 0.000914***
(0.000) (0.000) (0.000)

Precipitations Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
Household FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

R2 0.05 0.05 0.02 0.02 0.06 0.06
Observations 2432366 2432366 2432366 2432366 2432366 2432366

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. (1)-(6)
clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
conducted using survey weights. Results from the full regression are in Table B2.

Heterogeneity.— The findings from the prevalence regressions identify the drivers of the dis-
tribution of cooling appliances across Indian households. Exploring the heterogeneity in the
adoption response, we can reconcile the estimates from the prevalence and adoption regres-
sions, showing that in our sample period economic development, especially through incomes,
drives the rapid spread across household groups that are more likely to own the good.

First, Table B3 divides households based on whether they live in a rural or an urban setting.
We can evince that for air conditioner income elasticity for urban households is 7 times the same
elasticity for rural areas. Contrary, for evaporative coolers the income elasticities are similar.

Next, we investigate difference along the distribution of income. We categorise households
into three income groups: ”Poor,” ”Middle,” and ”Rich”. The results are presented in Table B4.
Critically, based on income level households invest their earnings in different appliances. On
the one hand, our estimates suggest only rich families invest household income installing an air
conditioner. The income coefficient for wealthiest families is 11 and 6 times greater than for low-
and middle-income households. On the other hand, middle-income families are two times more
likely than other households to invest their income in evaporative coolers.

Separating households based on both income distribution and urban/rural setting provides
additional insights (Table B5). For air conditioners, income elasticity tends to be increasing in
income and higher in urban areas. Contrary, income coefficients are more homogeneous across
income level for evaporative coolers, with middle-income and urban poor families emerging as
the main household groups that invest in the technology.

Finally, Table B6 presents the coefficients for adoption after dividing households in three cat-
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egories based on temperature levels. It is evincible that in warmer areas households are more
likely to invest their income for evaporative cooler, whereas for air conditioners income elastic-
ity is steady across climatic conditions.

Robustness Checks.— Our main estimates remain robust to various robustness tests. For preva-
lence we propose alternative fixed-effects specifications (Table B7-B9). For both prevalence and
adoption regressions we test clustering standard errors at state level (Table B10-Table B11); mod-
elling CDD non-linearly up to degree 3 polynomials (Table B12-B17); and calculating CDD at a
threshold of 18 °C rather than 24 °C (Table B18-B19). Finally, for prevalence we also employ dif-
ferent estimation methodologies, particularly logit (Table B20) and multinomial logit regressions
(Table B21).27 Our results and conclusions remain consistent.

To summarise, our results highlight the importance of considering both cross-sectional and
within-household dimensions to comprehend the influence of initial conditions on the adoption
of heat adaptation cooling appliances. The extensive margin estimates complement the descrip-
tive evidence presented earlier, revealing two distinct segments in Indian households’ cooling
technology choices. Evaporative coolers are prevalent in warmer regions, with low- and middle-
income families, and rural households increasingly catching up due to rising incomes and im-
proved electricity access. Conversely, air conditioners are predominantly concentrated among
high-income, highly educated, urban households, regardless of climatic conditions. Further-
more, the rapid income growth has accelerated adoption only among the wealthiest households,
exacerbating disparities in technology access. In the next section, we show how this different
distribution of the cooling appliances across households then modulates electricity consump-
tion responses to temperature shocks.

6 Intensive Margin: Electricity Consumption

This section explores the relationship between temperature, income and electricity use. Along
the intensive margin temperature impacts electricity quantity through an increasing use of a
fixed amount of cooling devices — such as air conditioners and evaporative coolers —, whereas
income shocks affect the use of all energy appliances. By then identifying heterogeneous effects
of temperature changes along income levels, climatic conditions, and across urban and rural
areas, we aim to highlight the unequal distribution of cooling energy use. The findings should
be confirmatory of the results obtained in the extensive margin section. That is, we expect to find
a higher responsiveness to temperature shocks in urban areas and for high-income households,
as it is where air-conditioning, the more energy-intensive appliance, is mostly spread.

6.1 Empirical Framework

To determine the impact of temperature and income on electricity consumption, we estimate the
following equation:

Qimy = α + ∑
j

θjT
j
d(i)my + g(Pd(i)my) + β Iimy + µi + δmy + ε imy (11)

where Qimy represents the natural logarithm of electricity quantity of household i in month
m and year y; g(Pd(i)my) is a second-degree polynomial of district d’s cumulative precipitation
in month m and year y; Iimy the natural logarithm of household income in month m and year y;
µi are household fixed-effect; δmy are month-year fixed, absorbing all unobserved time-varying
differences in electricity quantity that are common across households; εimy is the stochastic error
term. We assume the residuals are heteroskedastic and serially correlated within a district.

27In the multinomial logit the outcome variable is modelled as a categorical variable with three choices: ”No
Appliance”, ”Evaporative Cooler”, ”Air conditioner”.
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Our main interest relies in the relationship between electricity quantity and temperature. In
the baseline specification we model temperature using ten 3-degree temperature bins, T j

d(i)my.
Particularly, for each district d and month-year my, we count the number of days the mean daily
temperature falls into each bin. This non-parametric approach allows to (1) capture potential
non-linearities in the relationship electricity-temperature, and (2) is able to capture the response
at temperature cold and hot extremes. Each temperature bin’s coefficient measures the impact
of one more day with a mean temperature falling into the bin on the log of household daily
electricity, relative to the reference bin 17-20 °C. As we exploit the plausibly-random variation in
weather realisations of T j

d(i)my within households and month-year, we interpret these coefficients
as short-run effects (Dell et al., 2014; Hsiang, 2016).

To better understand the role of the extensive margin in shaping the dose-response func-
tion, we then separately estimate the relationship for different income levels, and across urban
and rural areas. We so take into account that the distribution of air-conditioning and air cooler
changes as we move along the income distribution and urbanisation levels. We expect richer
and urban households to be more responsive to temperature, as they are more likely to have,
and so use, the appliances.

6.2 Results

Main results.— Figure 1 presents the average effects of an additional day in each temperature
bin relative to the base range 17-20 °C. We find that with respect to a day between 17-20 °C, an
additional day between 32-35 °C increases electricity consumption by 0.19%, while an additional
day at or above 35 °C increases annual electricity consumption by 0.53%. Contrariwise, we
find evidence of lower use of electricity with cold temperatures. This is mainly because Indian
households do not use electric heaters, and so there is no U-shaped response function as in other
countries like US (Deschênes and Greenstone, 2011) and Mexico (Davis and Gertler, 2015).28 As
for income shocks,29 we find that a 1%-increase of monthly income induces a 0.08% increase in
monthly electricity demand (Table C1).

28Remaining in a developing context, Davis and Gertler (2015) estimates the impact of temperature bins on resi-
dential monthly electricity quantity in Mexico. Their coefficients are quite greater than ours in the warmer bins. Two
factors may explain these differences: 1) the average household in India is much poorer than the average household
in Mexico; 2) Mexico has a quite higher penetration of air-conditioning, particularly in warmer areas.

29Previous works (Davis et al., 2021; Pavanello et al., 2021) identify income as the main driver of residential elec-
tricity demand in India.
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Figure 1: Estimated Temperature-electricity Consumption Relationship

Notes: The figure plots the response function between log monthly electricity quantity and average
daily temperature bins (Equation 11). The response function is normalised with the 17-20°C category
set equal to zero so that each estimate corresponds to the estimated impact of an additional day in bin
j on the log monthly electricity quantity relative to the electricity quantity associated with a day on
which the temperature is between 17°C and 20°C. Full regression results are presented in Table C1. The
regression is weighted using survey weights. Standard errors are clustered at the district level.

Heterogeneity.— We test the heterogeneity of the temperature-electricity relationship. Our find-
ings suggest that the effect of temperature on electricity consumption is highly heterogeneous
across different types of households, and it mimics the distribution of the appliances.

First, we find that urban households are more than twice as responsive as rural households
for most temperature bins (Table C2). For instance, an additional day above 35 °C, relative to a
day between 17-20°C, increases electricity consumption of an urban household by 0.82%, while
by 0.38 for a rural household.

Second, dividing again households in three income categories, we find that temperature-
semi-elasticity is increasing in income (Table C3). This indicates that especially high-income
households are able to substantially increase their electricity demand to cope with hot tempera-
tures.

Going more in detail, we split households across both income levels and urban and rural
residence (Table C4). Critically, our estimates shows that, independently from income levels,
households living in cities tend to have higher semi-elasticity to warmer temperature bins, with
high income urban households emerging as the most responsive. Furthermore, Table C4 high-
lights two potential patterns. On the one hand, in rural areas, where only air coolers are mostly
spread, poor households responds more than middle income families, but less than the more
wealthy ones. A possible interpretation is that poor households have less efficient air coolers
— technology effect —, while richer households consume more because either they are less price
sensitive — rebound effect — or they have higher number of these appliances — scale effect. On
the other hand, in urban areas the effect of temperature monotonically increases as we move
from poor to rich families. Moreover, when we interpret the results in levels the differences
across income groups become even more striking. For instance, on average for an additional
day at or above 35 °C electricity consumption increases by 0.87 and 2.03 kWh for urban middle-
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and rich-income households respectively. This disparity is likely correlated with the different
technological choice.

Finally, we also provide a further test where we divide households based on the technology
they own. In line with the heterogeneity results, we find that the sample of families with air
conditioners consumes two to three times more electricity in response to warmer temperatures
than that one with evaporative coolers (Table C5). We find similar patterns even after restricting
these sub-samples only to high income households (Table C6). Critically, Table C6 also suggests
that poor and middle-income households having an air-conditioner are not much responsive to
the warmest temperature, while those with evaporative cooler respond only to the warmest bin.
This can be attributed to either (1) the low statistical power due to a much smaller sample or (2)
credit constraints in the utilisation of air-conditioning when it is very warm.

Robustness checks.— Our main results are robust to: using alternative time fixed-effects (Table
C7) and time-varying fixed-effects (Table C8) specifications; expressing electricity quantity in
levels (Table C9); exploiting CRU rather than ERA5 climate data (Table C10); clustering standard
errors at state level (Table C11); and specifying temperature 5-degree bins (Table C12 and Figure
C1). We also test a parametric response function by specifying temperature with up to degree
3 polynomials (Table C13). The results suggest that expressing temperature as linear can be a
good approximation. Finally, we employ alternative weather variables (Table C14) to test the
relationship, particularly Cooling Degree Days (CDD). The results remain consistent.

Collectively, the results presented in this section suggest the fundamental interrelation be-
tween income and temperature for intensive margin response. Furthermore, they underscore
the importance of considering urbanisation in shaping households’ electricity production fron-
tier. All of these results are confirmatory of what we find for the investment decision. That is,
technology modulates the responsiveness to temperature shocks, with households more likely
to own an air conditioner that consume more electricity during warmer days. Next, after ex-
ploring who is adapting and how, in the next section we identify the benefits of heat adaptation
and how they are distributed across the population. Critically, we test whether the disparities in
technological choice lead to consequences for health of Indian household.

7 Temperature, Mortality and the Benefit of Cooling

This section examines the impact of extreme temperatures on mortality, and how cooling tech-
nologies may mediate it. First, we analyse the relationship between annual mortality rates and
temperature distribution in India districts. Next, we demonstrate that the negative impact of ex-
treme temperatures disproportionately affects low-income and rural populations, where cooling
appliances are less available. Finally, we introduce cooling adaptation into our analysis, testing
whether the uptake of air conditioning and cooler can offset the negative impact of temperature,
and how the appliances differ in effectiveness.

7.1 Empirical Framework

We describe the regression model used to estimate the relationship between mortality and tem-
perature for the period 2014-2019. Similarly to Burgess et al. (2017), we specify our regression
equation as follows:

Mdt = α0 + ∑
j

θjTdtj + ∑
k

δkPdtk + ∑
h

βhHdth + µd + ρt + λr(d)t + λ2
r(d)t

2 + εdt (12)

where Mdt is the natural logarithm of all-age all-cause mortality rate in district d in year t.
The variable Tdtj denotes the number of days in district d and year t on which the daily mean
temperature fell in the jth of temperature bins. Particularly, for our baseline specification we
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use 5-degree temperature bins,30 and the omitted bin category is 15-20. We so estimate separate
coefficients δj for each of these temperature bin regressors. We again opt for estimating the re-
sponse function using temperature bins, since (1) as too-high and too-low temperatures can both
harm human health, it is likely that the temperature-mortality relationship is nonlinear; (2) the
nice property of temperature bins is that they are more able to capture response to temperature
extremes.

Because it is possible that temperature variation is correlated with precipitation variation,
the inclusion of precipitation is important. We then control for total precipitation Pdtk using a
categorical variable indicating whether a district d belongs to the k precipitation tercile in year t.

In our specification we also include humidity, which has been shown to have relevant effect
on mortality (Barreca, 2012). We divide daily specific humidity in three-grams-of-water-vapour
per kg bins, with the interval 9 g/kg to 12 g/kg of water vapour as omitted category. We also
specify further regressions where we enrich the covariates with interactions between tempera-
ture and humidity. We so aim to capture the impact of days with extreme hot and humid/arid
weather conditions.

Our specification also incorporate district fixed-effects µd, which absorb all unobserved region-
specific time invariant determinants of the outcomes, and year fixed-effects δt, which instead
absorb for time-varying differences in the dependent variable that are common across regions.
Finally, we control for climatic region-level quadratic time trends, λr(d)t and λ2

r(d), that take ac-
count shocks or time-varying factors that affect health may not be common across states.31

To estimate Equation 12 we employ Weighted Least Squares (WLS), where the weights are the
square root of total population in the district. The reasons are (1) the estimates of mortality rates
from large population districts are more precise, so this weighting corrects for heteroskedasticity
associated with these differences in precision; (2) the results reveal the impact on the average
person rather than on the average district, which we believe to be more meaningful.

Equation 12 estimates average population mortality-temperature responses. However, we
may expect the effect of temperature to vary based on the income distribution within each dis-
trict, generating so unequal exposure. We then test whether extreme temperatures unevenly
affects low-income populations. Specifically, we first estimate Equation 12 differentiating be-
tween urban and rural mortality rates.32 In addition, we estimate the heterogeneous effects of
temperature, differentiating between districts with a higher share of poor population. Specifi-
cally, for each district we define the share of individuals that are below the third income deciles
as poor, and we compute the share relative to the district population. Finally, we create two
subsamples of districts based on the median level of the share.

Finally, we introduce heat adaptation in the analysis. We first restrict the numbers of districts
to the CHPS sample for the years 2014-2019. We so match our mortality data with district-level
information on air-conditioning and evaporative cooler penetration shares, which we obtain by
aggregating the household data using the survey weights. We exploit this information to test
the hypothesis that cooling adaptation can serve as a critical mediator in mitigating the negative
effects of temperature extremes. We then specify our augmented equation such that we can
separate the protective effects of evaporative cooler and air conditioners:

Mdt = α0 + ∑
j

θjTdtj +
2

∑
l=1

φlCdtl +
2

∑
l=1

γl(T
≥35
dt × Cdtl)+

+ ∑
k

δkPdtk + ∑
h

βhHdth + µd + ρt + λr(d)t + λ2
r(d)t

2 + εdt

(13)

30Having annual mortality rates for few years we prefer to employ 5-degree rather 3-degree temperature bins to
avoid losing too much variability.

31Following Burgess et al. (2017) we use the information from India’s Meteorological Department, which divides
the country into five regions based on their climates.

32Burgess et al. (2017) suggests that most heat-related deaths in India occurred in rural areas.
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We hypothesise that if cooling appliances are indeed a mediator of the negative effects of
temperature extremes, then we would expect γl to be negative at the warmer temperature bins.
Heat adaptation Cdtl is a vector including air-conditioning and cooler shares at the district-year
level. In further regressions we also test for the role of humidity in determining the protective
effect of cooling appliances.

As in Barreca et al. (2016), a drawback of our analysis is that to identify the role of heat
adaptation we do not employ a quasi-experimental setting. The risk is then to capture through
the interaction coefficients correlation between the two appliances and other unobserved causes
of mortality. To rule out this possibility, we run a robustness check where we interact the two
shares with all the temperature bins. We so verify that the interactions are not significant for the
colder bins — that is, when the appliances are expected not to be used. Additionally, we provide
specifications where we include the natural logarithm of income per capita33 and its interactions
with the bins of temperature. In this way, we control that the interaction with air-conditioning
ownership does not simply capture places that are richer, and so less subject to heat-related
deaths because they have access to more private and public adaptation strategies.

7.2 Results

Main results.— Figure 2 presents the effects of an additional day in each temperature bin rela-
tive to the base range of 15-20°C. Our findings indicate that extreme warm temperatures have
significant clinical implications and may lead to potentially fatal outcomes. It is however worthy
to mention that, since we cannot distinguish the cause of death, the effect we identify includes
both the direct — such as heat strokes — and indirect impacts on individual health — that is,
through other illnesses, such as cardiovascular or renal diseases.

We observe that an additional day between 30 and 35 °C is associated with a 0.31% increase
in the annual mortality rate. However, while this effect is noteworthy and statistically signif-
icant, the majority of heat-induced deaths occur on days within the most extreme warm bin.
Comparing to a day in the range of 15-20 °C, an additional day at or above 35 °C is linked to a
1% increase in the annual mortality rate. This implies that, across our sample, about 6 deaths
per 100,000 population can be attributed to an additional day in the extreme temperature bin.34

Our results align to the estimates from Burgess et al. (2017), who find that an additional day
above 35 °C increases annual mortality rate by 0.74%. Similarly to their findings, our estimates
for the association between mortality and colder temperatures are imprecise. However, cold
temperatures are quite rare in India, as the country’s average temperature hovers around 25 °C.

33This is also obtained from the CHPS data using survey weights.
34This is obtained multiplying 0.00997× T( ≥ 35)× 100, 000
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Figure 2: Estimated Temperature-mortality Relationship

Notes: The figure plots the response function between log annual mortality rate and average daily
temperature bins (Equation 12) for the period 2014-2019. The response function is normalised with
the 15-20°C category set equal to zero so that each estimate corresponds to the estimated impact of an
additional day in bin j on the log annual mortality rate relative to the mortality rate associated with a
day on which the temperature is between 15°C and 20°C. Full regression results are presented in Table
D1. All regressions are weighted by the square root of district population. Standard errors are clustered
at the district level.

Table D1 also provides the estimated coefficients for humidity and precipitation. We high-
light two key findings from the analysis.

First, Columns 2 to 4 show that precipitation does not directly affect mortality. Second, Col-
umn 3 indicate that humidity alone is not significantly associated with mortality in India. This
differs from the findings of Barreca (2012) for the United States, where humidity demonstrates
a U-shaped pattern of influence on mortality. However, Column 4 suggest that controlling for
humidity proves to be important in obtaining unbiased estimates of the impact of temperature.
When controlling for humidity, the estimates for the effects of temperature bins increase com-
pared to the specification in Columns 1 and 2.

In Table D2, we extend our analysis to include several types of interactions between temper-
ature and humidity. In Column 2, we introduce an interaction term between average annual
specific humidity and temperature bins. Similar to findings by Barreca (2012), our results sug-
gest that heat-related deaths are more prevalent during humid conditions. This is evident as
the non-interacted terms, particularly for temperatures ≥ 35 °C, become small and statistically
insignificant. Moving on to Columns 3 to 5, we incorporate interactions between the warmest
temperature bin and the two extreme humidity bins. These outcomes further validate the role of
humid conditions. Notably, we observe no statistically significant effect of the interaction term
with arid conditions (0− 3 kg/g). In contrast, we estimate that the interaction with very humid
conditions (≥ 18 kg/g) significantly influences the impact of extreme heat. Specifically, under
these conditions, an additional day is associated with 6.43 deaths per 100,000 population.

All our main results are robust to various alternative specifications. This includes restricting
districts and years to the CHPS sample (Table D6-Table D7); imposing alternative fixed effects’
specifications (Table D8); controlling for income per capita (Table D9); clustering standard errors
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at the state level (Table D10); and altering the temperature bins’ interval to 3 degrees (Table D11).

Heterogeneity.— Our data also allows us to explore the hypothesis that weather vulnerability
is correlated with differences in income. This is because credit constraints limit the possibility of
individuals to respond to extreme temperature. We explore this relationship in two dimensions.

First, we estimate the temperature-mortality relationship function distinguishing between
urban and rural mortality rates. The separate regressions are reported in Table D3. Consistent
with the findings of Burgess et al. (2017), we find that majority of heat-related deaths occurs in
rural areas. An additional day at or above 35 °C is associated with a 0.9-1% increase in the annual
rural mortality rate, while with a 0.5-0.6% increase in annual urban mortality rate. Furthermore,
warm and humid days are associated with increased deaths only in rural areas.

Second, in Table D4 we examine the differential responses between districts with a high
and low share of individuals living in poverty. The results indicate that districts with a higher
poverty share are also more affected by temperature extremes. An additional day at or above
35 °C is associated with a 1.7% increase in the annual mortality rate — equivalent to 8.31 deaths
per 100,000 population. Conversely, areas where wealthier individuals reside exhibit a weaker
temperature-mortality relationship.

Lastly, in Table D5, we combine both dimensions of heterogeneity. Again, we find that the
most vulnerable individuals are those living in rural areas within districts with a higher share
of poverty. Even after accounting for the interaction between extreme heat and humidity, all the
results remain robust.

Heat Adaptation.— Table 5 presents the interaction coefficients from estimating Equation 13 to
examine the protective effect of heat adaptation. We highlight four key findings.

First, Columns 1-3 show the coefficients of our preferred specification, where we model the
interaction between the warmest temperature bin and the two technologies. We find strong
evidence that cooling adaptation is associated with a significant decrease in mortality due to hot
days. Notably, the protective effect of evaporative cooler is less precisely estimated, and once
we control for air-conditioning ownership rate it becomes non-significant. Moreover, the effect
of air-conditioning is more than three times as large as that of evaporative coolers. Specifically,
a 1 percentage points increase in residential air-conditioning and cooler ownership is associated
with a decrease in the mortality effect of a day at or above 35 °C by 0.021-0.027% and 0.006-
0.007%, respectively. This corresponds to approximately 1.3% and 0.4% of the mortality effect
of such hot days when no adaptation is taking place. The effect for air conditioners is in line
with the one found by Barreca et al. (2016). They find that a 10 percentage points increase in the
penetration rate of air-conditioning reduces by 10% the effect of a day above 32 °C (90 °F).

Second, we examine whether heat adaptation reduces the mortality effect of very humid days
(Columns 4-6). Consistent with the finding of no significant effect of humidity on mortality, we
do not observe any significant reduction in mortality from air conditioners and coolers in humid
conditions. However, the mitigation effect of air conditioner remains larger in absolute value,
and with the correct sign, with respect to the coefficient of cooler.

Third, in the last specification (Columns 7-9), we test whether the two technologies can pro-
tect households from extreme warm and humid days. We find that air conditioners are three
times more effective than air coolers. These results align with the functioning of the two tech-
nologies, as air coolers perform well in dry conditions but poorly in very humid conditions,
while air conditioners are effective in all weather conditions.

Lastly, we observe that the higher the penetration of these cooling technologies, the greater
the reduction in the impact of extreme hot days. For example, in Delhi, where air-conditioning
penetration increased by 25 percentage points between 2014 and 2019, the mortality effect of
days at or above 35 °C was reduced by a further 32%.35

35This is computed as follows: (0.25 × -0.021)/0.016
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Table 5: Protective Effect of Heat Adaptation

Temperature Humidity Temperature × Humidity

Air Conditioner Cooler Both Air Conditioner Cooler Both Air Conditioner Cooler Both
(1) (2) (3) (4) (5) (6) (7) (8) (9)

AC × T (≥ 35) -0.0270*** -0.0206**
(0.009) (0.009)

Cooler × T (≥ 35) -0.00769* -0.00629
(0.004) (0.005)

AC × H (≥ 18) -0.000662 -0.000685
(0.002) (0.002)

Cooler × H (≥ 18) 0.000507 0.000538
(0.001) (0.001)

AC × T (≥ 35) × H (≥ 18) -0.000422*** -0.000384***
(0.000) (0.000)

Cooler × T (≥ 35) × H (≥ 18) -0.0000512 -0.0000238
(0.000) (0.000)

District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Observations 2753 2753 2753 2753 2753 2753 2753 2753 2753

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated period is 2014-2019. Regressions also include all the temperature and humidity bins,
and precipitation terciles. Reference category for temperature is bin 15-20 ° C. Reference category for humidity is bin 9-12 g/kg. (1)-(9) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of district population. Results from the full regression are in Table
D12.
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We test the robustness of our findings. First, we substitute the district-level ownership shares
with state-level penetration shares. This is because CHPS are not perfectly representative at
the district level, while they are at the state level (Table D13). The results remain consistent.
Second, in Table D14 we interact the two shares with all the temperature bins. The results are
more imprecisely estimated as we introduce many variables. However, sign and magnitude
of the interaction with the warmest bins remain consistent. In addition, we do not find that
coefficients at colder temperatures are statistically significant. Third, we introduce income and
its interactions with all temperature bins as further controls (Table D15). The coefficients remain
in the same order of magnitude. These robustness checks suggest that it is unlikely that our
estimates of the protective effect of heat adaptation are correlated with unobserved determinants
of mortality.

In summary, our findings demonstrate that high-temperature days lead to additional deaths
in India, particularly during extremely warm days. Furthermore, given the correlation between
income and access to cooling appliances, the benefits of heat adaptation are primarily experi-
enced by a few. We find that most heat-related deaths occur in rural and poorer regions. Finally,
despite the wider spread of evaporative coolers due to their lower cost, they are less effective in
protecting individuals from extremely warm conditions compared to air-conditioning.

8 Discussion

To illustrate the economic significance of our findings, we provide a back-to-the-envelope calcu-
lation of the gross welfare gains related to the number of prevented deaths from heat adaptation,
with particular attention to the differential performance of air conditioners and coolers. We also
discuss the policy implications of our results, analysing the cost of policies aiming at subsidising
heat adaptation technologies for households.

8.1 Benefits from Avoided Deaths

The estimates obtained in previous section allow to provide simple back-to-the-envelope calcu-
lations of the benefits from heat adaptation.

We begin by estimating the number of heat-induced deaths for in India. To do so, we use
the estimated coefficients from the specification specified in Equation 13 (Column 3, Table 5).36

For this exercise, we only consider the extreme bin ≥ 35 °C. Firstly, we calculate the number of
deaths in India across the years 2014-2019 under the assumption of no adaptation as follows:

DeathsNoAdapt = θ̂≥35 × T≥35 × TPOP×M

where both air conditioning and evaporative cooler ownership rates are set to zero, and we
use the average country population in the period (country population (TPOP), and the sample
averages of mortality rate (M) and number of days in the warmest bin (T≥35). Secondly, we
compute the number of deaths when adaptation takes place:

DeathsAdapt = θ̂≥35 × T≥35 × TPOP×M−
2

∑
l=1

γ̂l≥35 × T≥35 × Cl × TPOP×M

This provides the percentage of lives saved in each adaptation scenario. Finally, to estimate
the gross welfare gains related to the avoided deaths, we multiply by the estimated Indian Value
of a Statistical Life (VSL) from Madheswaran (2007), which is 0.18 million dollars (15 million
rupees).37

36We provide alternative results using the specification expressed in Column 9 of Table 5.
37Other estimates of the VSL for India have been used. For instance, Jack et al. (2022) uses 1 billion dollars. We

prefer opting for a more conservative estimate.
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Based on our estimates, during the period 2014-2019, approximately 0.865 million people in
India would have yearly died as a result of extreme heat if no adaptation technologies had been
available. However, thanks to the use of air conditioners and evaporative coolers, about 21% of
these excess deaths were avoided. This translates to a significant annual gross welfare gain of
32 billion dollars. This is equivalent to 2.1% of the average annual GDP in India in the period
2014-2019.

The largest contribution to the economic benefits comes from evaporative coolers (66%). This
is because they are five times more spread than air conditioners. Indeed, if air conditioning
had been as widely adopted as evaporative coolers, air conditioners alone would have yearly
avoided around 47% of heat-induced deaths, resulting in a larger annual gross welfare gain, 73
billion dollars. This corresponds to 4.9% of the average annual GDP. These estimates are similar
to the ones obtained from Barreca (2012) for the United States in 1980 — 85-185 billion dollars.38

Contrariwise, if evaporative coolers had been as prevalent as air conditioners, they would have
avoided only around 2% of heat-related deaths. Critically, this shows the large disparities in
terms of economic benefits that two technologies can provide.

There are however important drawbacks in our estimates. On the one hand, these estimates
represent an upper bound. Our mortality data do not allow to estimate age-specific temperature-
mortality responses. This means that we are assuming the same life expectancy for all individ-
uals who would have died without heat adaptation. On the other hand, we might also under-
estimate the true economic benefits coming from heat-related adaptation. To obtain a monetary
value, we use the VSL, which may not fully capture the value of preventing non-fatal risks for
health.

8.2 Policy Implications

Our results have several policy implications. First, our findings highlight the potential public
health benefits of using more effective cooling technologies in mitigating heat-related health
risks. Whereas evaporative coolers are cheaper and more sustainable, they appear as a stop-
gap solution to reduce the cooling gap. However, as heatwaves and extreme heat events are
becoming more frequent and severe due to climate change, not increasing the access to the most
effective technology may have significant health threats.

Second, we show that air conditioners are still not affordable most of the population in de-
veloping countries. In this sense, incentives, subsidies, or support programs are fundamental
make air conditioners more accessible to vulnerable populations. Even though these policies
may be expensive due to the price of air conditioners, the costs are likely to be outweighed by
the benefits from saved lives. To illustrate this, we can conduct a simple back-of-the-envelope
calculation. We start assuming that the average annualised upfront cost for an air conditioner
is about 3083 rupees, and the total number of households in India is about 302.4 million.39 Sub-
sidising 100% of the total cost to increase the penetration rate of air conditioner from 6% to the
same level of evaporative cooler (33%) would cost about 3 billion dollars. In addition to upfront
costs, we must consider the additional electricity expenses for each new household with air con-
ditioning following the policy. This can be estimated by multiplying the coefficient for the bin
≥ 35 °C in Column 1 of Table C6 by i) the average annual number of days in the extreme temper-
ature bin, ii) the average annual electricity consumption of a household with air conditioning,
iii) electricity prices, and iv) the number of households with air conditioning post-policy. This
calculation suggests an estimated additional electricity expenditure during days with tempera-
ture at or above 35 °C equal to 0.56 billion dollars. Finally, this increased electricity usage would

38Critically, the average level of Indian GDP in our sample period is quite near to the GDP of the United States in
1980.

39To obtain this estimate we use the equation from Hausman (1979): ( d
1+d )× (

ρ
1−(1+d)−q ). In the equation d is the

discount rate and is set equal to 0.05; q is the durability and is assumed equal to ten years; and ρ is the capital cost of
an air conditioner and is set equal to 25000 rupees.
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result in additional emissions, incurring a social cost for Indian society. We can estimate this
emission-related social cost by multiplying the previously calculated additional electricity con-
sumption (kWh) by i) Indian carbon intensity (0.28), ii) the mean estimate (185 $/tCO2) of the
Social Cost of Carbon from Rennert et al. (2022), and once again, iii) the number of the new
households with air-conditioning. This computation yields a social cost from emissions during
days with temperature at or above 35°C equal to 3.7 million dollars. Thus, in conclusion, the
estimated cost associated with subsidising air conditioners is notably smaller than the economic
benefit such a policy would generate.

9 Conclusions

Our study contributes to understanding the critical nexus of climate adaptation, household tech-
nology choices, and mortality outcomes in the context of rising temperatures and energy de-
mand in India.

We underline the pivotal role of economic development in shaping cooling technology adop-
tion and use. Rising incomes drive the adoption and use of heat mitigation tools. Yet, house-
holds’ adaptive capacity to extreme heat is still not uniform. Lower and middle-income house-
holds predominantly opt for evaporative coolers, whereas wealthier households invest in air
conditioning.

Critically, this technological disparity has important consequences for households’ health.
Our estimate indicates a clear difference in the protective effect of the two technologies against
extreme heat. Air conditioners prove to highly effective at reducing heat-related deaths, accen-
tuating the role of more advanced technologies. In contrast, evaporative coolers, while more
accessible to credit constrained households, exhibit a comparatively quite modest effect. As a
result, even when lower income households adapt, they remain exposed to the health effect of
extreme heat. This disparity in outcomes underscores the pressing need for equitable technology
dissemination, ensuring that economic benefits from lives saved are not prerogative of few.

Our work opens avenues for future research. Firstly, we provide an example of how two
competing adaptation technologies may contribute to inequality in exposure to climate change.
In this sense, new applications to other adaptation strategies, such as in the agriculture sector,
would be key to provide the right framework for policymakers to operate. Secondly, framing our
findings within a projection context could yield valuable insights. In India income is expected
to keep quickly growing in the next decades. This would relax credit constraints, allowing even
lower income families to have access to the benefits of air-conditioning. However, rising income
will not be able to solve cooling inequality alone (Pavanello et al., 2021; Davis et al., 2021). We can
so expect to still have part of the population exposed to extreme heat. Thirdly, our investigation
underscores the significance of the cost of cooling appliances. Exploring structural simulations
of policies aimed at alleviating inequality could be highly informative. Such policies might
encompass subsidies on capital costs and investments in technological advancements for these
appliances. Fourthly, extending our analysis to determine the external validity of our results is
an intriguing prospect. This entails investigating whether the observed technological inequality
in heat adaptation is a distinctive feature of India or if it characterises other countries as well.

Yet, it is important to acknowledge relevant limitations of our study. First, due to variations
in the timing of the questions, in the household data we cannot directly isolate the impact of air
conditioners and evaporative coolers on electricity demand. This would have allowed to esti-
mate appliance-specific electricity consumption to employ in the mortality analysis. Owning an
electric appliance is indeed not necessarily a synonym of utilising it. Additionally, our mortality
data lack the granularity to differentiate across age categories, which impacts our back-of-the-
envelope calculations for the economic benefits of heat adaptation. Moreover, the relatively
short time span and annual frequency of our data limit the variation we can exploit to identify
the effect of temperature and adaptation.
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Appendix

A. Data: Additional Statistics

Figure A1: Total Value (USD Millions) of Air-Conditioning Imports in India (1987-2021)

Notes: The black line represents the observed total value of air-conditioning imports in India. The red
line is a locally weighted regression to capture the trend.
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Figure A2: Air-conditioning and Evaporative Coolers Penetration Rates by Income Level and
Climatic Conditions (2014-2019)

Notes: Red and blue lines: the trends in household ownership rate of the two appliances across our
sample period. Grey line: 10-year moving average of quarterly CDD in the previous decade. ’Poor’,
’Middle’ and ’Rich’ respectively refer to households between the 1st and 2nd decile, between the 3rd
and 8th decile, and between the 9th and 10th decile. ’Cold’, ’Mild’ and ’Warm’ are terciles of a 30-year
average of annual CDD.
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Figure A3: Air-conditioning and Evaporative Coolers Penetration Rates by Indian State (2014-
2019)

Notes: Red and blue lines: the trends in household ownership rate of the two appliances across our
sample period. Grey line: 10-year moving average of quarterly CDD in the previous decade. Indian
states are sorted by increasing household income.
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Table A1: Data Sources for Each Analysis

Source Type Unit Frequency Years Variables

Extensive Margin
CHPS Panel Household Four-monthly 2014-2019 Air-conditioning,

Evaporative Cooler,
Household Income,

Household characteristics
ERA5 Panel Grid Daily 1981-2019 Cooling Degree Days,

Precipitation
CRU Panel Grid Daily 1981-2019 Temperature,

Precipitation

Intensive Margin
CHPS Panel Household Monthly 2014-2019 Electricity Consumption,

Household Income
NSS Cross-sectional Household Yearly 2011 Electricity Price
ERA5 Panel Grid Daily 1981-2019 Temperature,

Precipitation

Mortality
CRS Panel District Annual 2014-2019 Mortality Rates
CHPS Panel Household (Four-)Monthly 2014-2019 Household Income,

Air-conditioning,
Evaporative Cooler

ERA5 Panel Grid Daily 1981-2019 Temperature,
Precipitation,

Humidity
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Table A2: Descriptive Statistics at the Household Level - Urban vs Rural Areas and Income Quintiles

Rural Urban

Total 1st 2nd 3rd 4th 5th Total 1st 2nd 3rd 4th 5th

CHPS:

Air-conditioning (Dummy) 0.02 0.01 0.01 0.01 0.02 0.07 0.13 0.01 0.02 0.03 0.06 0.31
(0.09) (0.05) (0.07) (0.08) (0.10) (0.20) (0.49) (0.15) (0.20) (0.22) (0.33) (0.65)

Evaporative Cooler (Dummy) 0.29 0.10 0.21 0.33 0.42 0.56 0.42 0.20 0.33 0.37 0.41 0.52
(0.31) (0.18) (0.27) (0.33) (0.36) (0.40) (0.70) (0.57) (0.69) (0.69) (0.70) (0.70)

Electricity Quantity (kWh) 89.28 60.49 76.82 91.78 109.88 138.06 137.09 75.35 93.00 109.63 130.61 85.94
(57.51) (27.62) (39.17) (53.45) (70.77) (104.21) (173.22) (81.73) (104.01) (132.65) (158.72) (205.30)

Income (Rupee) 13406.28 6822.23 9817.41 12702.13 16981.04 29796.09 21435.13 7146.55 10087.13 13013.10 17501.73 35917.25
(11867.20) (2615.27) (4541.54) (6863.16) (10294.84) (30454.94) (30286.02) (4403.73) (6267.55) (8648.15) (12414.11) ( 40270.70)

Power Availability 21.24 21.22 20.69 21.23 21.66 21.69 22.70 22.65 22.45 22.67 22.73 22.80
(2.84) (2.62) (2.86) (2.83) (2.79) (3.03) (4.01) (4.43) (4.58) (4.15) (3.93) (3.67)

N°Households 71232 139328

Notes: Means and standard deviations (in parentheses) across the survey period are reported. Air-conditioning, air cooler, and power availability are at the four-monthly level. All other variables
are at the monthly level. Weights for country-level representativeness are applied.
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Table A3: Descriptive Statistics at the Household Level across Years - Urban vs Rural Areas and Income Quintiles

Total Rural Urban

2014 2019 2014 2019 2014 2019

CHPS:

Air-conditioning (Dummy) 0.04 0.07 0.01 0.02 0.11 0.17
(0.21) (0.25) (0.07) (0.09) (0.46) (0.52)

Evaporative Cooler (Dummy) 0.24 0.44 0.19 0.41 0.34 0.51
(0.45) (0.49) (0.27) (0.35) (0.71) (0.70)

Electricity Quantity (kWh) 92.35 113.56 76.19 99.65 125.94 142.04
(95.47) (100.83) (50.14) (61.20) (176.61) (173.05)

Income (Rupee) 13251.31 20313.84 10949.97 17460.70 18035.89 26157.00
(16556.57) (23917.88) (10575.25) (16877.12) (24602.18) (33885.25)

Urban 0.34 0.33 - - - -
(0.49) (0.47) - - - -

Power Availability 20.61 22.67 19.88 22.35 22.03 23.31
(4.95) (2.45) (3.47) (1.92) (5.58) (2.50)

N° Households 210560

Notes: Means and standard deviations (in parentheses) across the survey period are reported. Air-conditioning, air cooler, and power
availability are at the four-monthly level. All other variables are at the monthly level. Weights for country-level representativeness are
applied.
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B.1 Extensive Margin: Main Results

Table B1: Impact of Temperature on the Prevalence of Cooling Appliances

Both Appliances Air Conditioner Evaporative Cooler
(1) (2) (3) (4) (5) (6)

CDD (100s) 0.0146*** -0.0373*** 0.0000375 -0.0101 0.0145*** -0.0423***
(0.002) (0.010) (0.001) (0.007) (0.003) (0.013)

Log(Income) 0.0863*** 0.0637*** 0.0592*** 0.0547*** 0.0611*** 0.0363**
(0.007) (0.010) (0.006) (0.006) (0.010) (0.015)

CDD × Log(Income) 0.00548*** 0.00107 0.00600***
(0.001) (0.001) (0.002)

Urban (Yes = 1) 0.0143 0.0149 0.0380*** 0.0381*** -0.00945 -0.00878
(0.014) (0.014) (0.006) (0.006) (0.016) (0.016)

Precipitation -0.0517*** -0.0488*** 0.000392 0.000959 -0.0556*** -0.0524***
(0.017) (0.017) (0.005) (0.005) (0.019) (0.019)

Precipitation2 0.00709 0.00654 0.000998 0.000891 0.00693 0.00633
(0.013) (0.013) (0.002) (0.002) (0.014) (0.014)

Power Availability 0.0107*** 0.0107*** -0.000245 -0.000245 0.0126*** 0.0126***
(0.003) (0.003) (0.001) (0.001) (0.003) (0.003)

Generators (%) 0.610*** 0.609*** 0.129*** 0.129*** 0.643*** 0.641***
(0.048) (0.047) (0.022) (0.022) (0.052) (0.051)

Head Age 0.00119*** 0.00119*** 0.00104*** 0.00104*** 0.000871*** 0.000879***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Head Gender (Female = 1) -0.00138 -0.00138 -0.00100 -0.00101 -0.00138 -0.00138
(0.003) (0.003) (0.002) (0.002) (0.003) (0.003)

Primary 0.0451*** 0.0452*** 0.0118*** 0.0118*** 0.0382*** 0.0383***
(0.004) (0.004) (0.002) (0.002) (0.004) (0.004)

Secondary 0.0846*** 0.0847*** 0.0321*** 0.0322*** 0.0721*** 0.0723***
(0.006) (0.006) (0.005) (0.005) (0.007) (0.007)

Post-secondary 0.144*** 0.143*** 0.152*** 0.152*** 0.0976*** 0.0974***
(0.011) (0.011) (0.013) (0.013) (0.008) (0.008)

2-5 Members 0.00722 0.00632 -0.0371*** -0.0372*** 0.0273** 0.0263**
(0.011) (0.011) (0.005) (0.005) (0.012) (0.012)

5-10 Members -0.0115 -0.0123 -0.0606*** -0.0608*** 0.0175 0.0165
(0.013) (0.012) (0.007) (0.007) (0.015) (0.015)

≥ 11 Members -0.0138 -0.0145 -0.0865*** -0.0867*** 0.0255 0.0248
(0.021) (0.020) (0.013) (0.013) (0.023) (0.023)

Plastics -0.0473*** -0.0480*** -0.00942** -0.00957** -0.0355** -0.0363**
(0.014) (0.014) (0.005) (0.005) (0.016) (0.016)

Wood and Grass -0.106*** -0.106*** 0.00127 0.00130 -0.102*** -0.102***
(0.014) (0.014) (0.003) (0.003) (0.014) (0.014)

Stone 0.0760*** 0.0759*** -0.0350*** -0.0350*** 0.0792*** 0.0791***
(0.025) (0.025) (0.011) (0.011) (0.025) (0.025)

State FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

R2 0.51 0.51 0.21 0.21 0.51 0.51
Observations 2442730 2442730 2442730 2442730 2442730 2442730

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. For the
categorical variables the omitted categories are: ’No Education’, ’1 Member’, and ’Tile’. (1)-(3) clustered standard
errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using
survey weights.
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Table B2: Impact of Temperature on the Adoption of Cooling Appliances

Both Appliances Air Conditioner Evaporative Cooler

(1) (2) (3) (4) (5) (6)

CDD -0.000669 -0.00723** 0.000215 0.00151 -0.000767* -0.00943***
(0.000) (0.003) (0.000) (0.001) (0.000) (0.003)

Log(Income) 0.0413*** 0.0383*** 0.0134*** 0.0140*** 0.0348*** 0.0310***
(0.003) (0.003) (0.001) (0.002) (0.003) (0.003)

CDD × Log(Income) 0.000693** -0.000137 0.000914***
(0.000) (0.000) (0.000)

Power Availability 0.00429** 0.00430** -0.000902* -0.000903* 0.00384** 0.00384**
(0.002) (0.002) (0.001) (0.001) (0.002) (0.002)

Generators (%) 0.358*** 0.358*** 0.126*** 0.126*** 0.351*** 0.351***
(0.057) (0.057) (0.019) (0.019) (0.057) (0.057)

Precipitation -0.00374 -0.00345 -0.00350 -0.00355 -0.00179 -0.00141
(0.005) (0.005) (0.002) (0.002) (0.005) (0.005)

Precipitation2 0.0000601 0.0000564 0.00215* 0.00215* -0.00155 -0.00156
(0.002) (0.002) (0.001) (0.001) (0.003) (0.003)

Household FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

R2 0.05 0.05 0.02 0.02 0.06 0.06
Observations 2432366 2432366 2432366 2432366 2432366 2432366

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. (1)-(6) clustered
standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted
using survey weights
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Table B3: Impact of Temperature on the Adoption of Cooling Appliances — Urban and Rural

Air Conditioner Evaporative Cooler

Rural Urban Rural Urban
(1) (2) (3) (4)

CDD (100s) 0.000512 0.000903 -0.0130*** -0.00288
(0.001) (0.002) (0.004) (0.003)

Log(Income) 0.00554*** 0.0342*** 0.0316*** 0.0284***
(0.001) (0.003) (0.003) (0.004)

CDD × Log(Income) -0.0000104 -0.0000845 0.00128*** 0.000225
(0.000) (0.000) (0.000) (0.000)

Precipitations Controls Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes
Household FE Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes

R2 0.01 0.03 0.07 0.06
Observations 786354 1646012 786354 1646012

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership
of the appliance. (1)-(4) clustered standard errors at district level in parentheses. *
p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.

Table B4: Impact of Temperature on the Adoption of Cooling Appliances — Income Level

Air Conditioner Evaporative Cooler

Poor Middle Rich Poor Middle Rich
(1) (2) (3) (4) (5) (6)

CDD (100s) 0.00105 -0.000831 0.000590 -0.0310*** -0.0250*** 0.0000605
(0.001) (0.001) (0.006) (0.005) (0.006) (0.004)

Log(Income) 0.00320*** 0.00752*** 0.0437*** 0.0184*** 0.0324*** 0.0159***
(0.001) (0.001) (0.003) (0.004) (0.004) (0.004)

CDD × Log(Income) -0.000115 0.000104 -0.0000134 0.00346*** 0.00256*** -0.0000619
(0.000) (0.000) (0.001) (0.001) (0.001) (0.000)

Precipitations Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
Household FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

R2 0.01 0.01 0.03 0.10 0.07 0.02
Observations 485084 1219147 485420 485084 1219147 485420

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. (1)-(6) clus-
tered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
conducted using survey weights.
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Table B5: Impact of Temperature on the Adoption of Cooling Appliances — Income Level and Urban and Rural

Air Conditioner Evaporative Cooler

Rural Urban Rural Urban

Poor Middle Rich Poor Middle Rich Poor Middle Rich Poor Middle Rich
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

CDD (100s) 0.00194 0.00131 0.00768 -0.00438** -0.00698** -0.00896 -0.0315*** -0.0287*** -0.000432 -0.0230*** -0.0139** 0.00206
(0.001) (0.002) (0.007) (0.002) (0.003) (0.007) (0.006) (0.007) (0.007) (0.008) (0.006) (0.004)

Log(Income) 0.00305*** 0.00449*** 0.0237*** 0.00391*** 0.0156*** 0.0631*** 0.0163*** 0.0312*** 0.0226*** 0.0327*** 0.0363*** 0.0103**
(0.001) (0.001) (0.005) (0.001) (0.002) (0.005) (0.004) (0.005) (0.006) (0.008) (0.005) (0.004)

CDD × Log(Income) -0.000208 -0.000109 -0.000629 0.000470** 0.000719** 0.000880 0.00353*** 0.00291*** -0.0000609 0.00249*** 0.00142** -0.000266
(0.000) (0.000) (0.001) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000)

Precipitations Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Household FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.01 0.01 0.04 0.01 0.02 0.05 0.10 0.07 0.04 0.09 0.08 0.03
Observations 243703 407412 79366 241381 811735 406054 243703 407412 79366 241381 811735 406054

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. (1)-(12) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, ***
p < 0.01. All regressions are conducted using survey weights.
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Table B6: Impact of Temperature on the Adoption of Cooling Appliances — Climate

Air Conditioner Evaporative Cooler

Cold Mild Warm Cold Mild Warm
(1) (2) (3) (4) (5) (6)

CDD (100s) 0.00306 0.000877 0.000374 -0.0156*** -0.000243 -0.00156
(0.003) (0.001) (0.001) (0.006) (0.004) (0.004)

Log(Income) 0.0152*** 0.0134*** 0.0128*** 0.0122*** 0.0370*** 0.0435***
(0.003) (0.002) (0.002) (0.005) (0.004) (0.005)

CDD × Log(Income) -0.000353 -0.0000251 -0.0000400 0.00159*** -0.0000936 0.0000270
(0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

Precipitations Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
Household FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

R2 0.02 0.03 0.01 0.08 0.08 0.05
Observations 829670 739207 863489 829670 739207 863489

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. (1)-(6) clus-
tered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
conducted using survey weights.

B.2 Extensive Margin: Robustness Checks

Table B7: The Impact of Temperature and Income on the Prevalence of Cooling Appliances —
Alternative Fixed-effects Specification

FE FE FE FE FE
(1) (2) (3) (4) (5)

CDD (100s) 0.00638*** -0.000320 0.0154*** 0.0146*** 0.0146***
(0.001) (0.000) (0.002) (0.002) (0.002)

Log(Income) 0.0928*** 0.101*** 0.0858*** 0.0868*** 0.0863***
(0.008) (0.004) (0.007) (0.007) (0.007)

Precipitations Controls Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes
State FE Yes No No No No
District FE No Yes Yes Yes Yes
Wave FE No No Yes Yes Yes
Linear State × Year Trend No No No Yes No
Quadratic State × Year Trend No No No No Yes

R2 0.49 0.57 0.50 0.51 0.51
Observations 2442730 2442730 2442730 2442730 2442730

Notes: Column (5) shows the main specification. The dependent variable is a dummy variable
(0,1) indicating the ownership of the appliance. (1)-(5) clustered standard errors at state level in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using survey
weights
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Table B8: The Impact of Temperature and Income on the Prevalence of Air-conditioning —
Alternative Fixed-effects Specification

FE FE FE FE FE
(1) (2) (3) (4) (5)

CDD (100s) -0.000631** -0.000546*** -0.000194 0.0000269 0.0000375
(0.000) (0.000) (0.001) (0.001) (0.001)

Log(Income) 0.0541*** 0.0520*** 0.0593*** 0.0591*** 0.0592***
(0.005) (0.005) (0.006) (0.006) (0.006)

Precipitations Controls Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes
State FE Yes No No No No
District FE No Yes Yes Yes Yes
Wave FE No No Yes Yes Yes
Linear State × Year Trend No No No Yes No
Quadratic State × Year Trend No No No No Yes

R2 0.20 0.24 0.21 0.21 0.21
Observations 2442730 2442730 2442730 2442730 2442730

Notes: Column (5) shows the main specification. The dependent variable is a dummy variable (0,1)
indicating the ownership of the appliance. (1)-(5) clustered standard errors at state level in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights

Table B9: The Impact of Temperature and Income on the Prevalence of Cooler — Alternative
Fixed-effects Specification

FE FE FE FE FE
(1) (2) (3) (4) (5)

CDD (100s) 0.00681*** -0.00000913 0.0156*** 0.0145*** 0.0145***
(0.001) (0.000) (0.003) (0.003) (0.003)

Log(Income) 0.0711*** 0.0840*** 0.0611*** 0.0617*** 0.0611***
(0.010) (0.005) (0.010) (0.010) (0.010)

Precipitations Controls Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes
State FE Yes No No No No
District FE No Yes Yes Yes Yes
Wave FE No No Yes Yes Yes
Linear State × Year Trend No No No Yes No
Quadratic State × Year Trend No No No No Yes

R2 0.49 0.58 0.49 0.51 0.51
Observations 2442730 2442730 2442730 2442730 2442730

Notes: Column (5) shows the main specification. The dependent variable is a dummy variable
(0,1) indicating the ownership of the appliance. (1)-(5) clustered standard errors at state level in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using survey
weights
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Table B10: The Impact of Temperature and Income on the Prevalence of Cooling Appliances —
Alternative Standard Errors Specifications

Both Appliances Air-conditioning Evaporative Cooler
(1) (2) (3)

CDD (100s) 0.0146** 0.0000375 0.0145**
(0.006) (0.001) (0.007)

Log(Income) 0.0863*** 0.0592*** 0.0611**
(0.015) (0.008) (0.022)

Precipitations Controls Yes Yes Yes
Household Controls Yes Yes Yes
State FE Yes Yes Yes
Wave FE Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes

R2 0.51 0.21 0.51
Observations 2442730 2442730 2442730

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appli-
ance. (1)-(3) clustered standard errors at state level in parentheses. * p < 0.10, ** p < 0.05, ***
p < 0.01. All regressions are conducted using survey weights.

Table B11: The Impact of Temperature and Income on the Adoption of Cooling Appliances —
Alternative Standard Errors Specifications

Both Appliances Air-conditioning Air Cooler
(1) (2) (3)

CDD (100s) -0.000669 0.000215 -0.000767*
(0.000) (0.000) (0.000)

Log(Income) 0.0413*** 0.0134*** 0.0348***
(0.005) (0.002) (0.006)

Precipitations Controls Yes Yes Yes
Household Controls Yes Yes Yes
Household FE Yes Yes Yes
Wave FE Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes

R2 0.05 0.02 0.06
Observations 2432366 2432366 2432366

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of
the appliance. (1)-(3) clustered standard errors at state level in parentheses. * p < 0.10,
** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.
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Table B12: The Impact of Temperature and Income on the Prevalence of Cooling Appliances —
Nonlinear Specification

FE FE FE
(1) (2) (3)

CDD (100s) 0.0146*** 0.00237 0.00935
(0.002) (0.004) (0.010)

CDD
2

0.00125*** -0.000477
(0.000) (0.002)

CDD
3

0.000109
(0.000)

Log(Income) 0.0863*** 0.0863*** 0.0862***
(0.007) (0.007) (0.007)

Precipitations Controls Yes Yes Yes
Household Controls Yes Yes Yes
State FE Yes Yes Yes
Wave FE Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes

R2 0.51 0.51 0.51
Observations 2442730 2442730 2442730

Notes: The dependent variable is a dummy variable (0,1) indicating the
ownership of the appliance. (1)-(3) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are conducted using survey weights.
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Table B13: The Impact of Temperature and Income on the Prevalence of Air-conditioning —
Nonlinear Specification

FE FE FE
(1) (2) (3)

CDD (100s) 0.0000375 0.00369*** -0.000971
(0.001) (0.001) (0.004)

CDD
2

-0.000372** 0.000780
(0.000) (0.001)

CDD
3

-0.0000730
(0.000)

Log(Income) 0.0592*** 0.0592*** 0.0592***
(0.006) (0.006) (0.006)

Precipitations Controls Yes Yes Yes
Household Controls Yes Yes Yes
State FE Yes Yes Yes
Wave FE Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes

R2 0.21 0.21 0.21
Observations 2442730 2442730 2442730

Notes: The dependent variable is a dummy variable (0,1) indicating the
ownership of the appliance. (1)-(3) clustered standard errors at district level
in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
conducted using survey weights.
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Table B14: The Impact of Temperature and Income on the Prevalence of Coolers — Nonlinear
Specification

FE FE FE
(1) (2) (3)

CDD (100s) 0.0145*** 0.000153 0.00619
(0.003) (0.004) (0.010)

CDD
2

0.00147*** -0.0000261
(0.000) (0.002)

CDD
3

0.0000945
(0.000)

Log(Income) 0.0611*** 0.0610*** 0.0610***
(0.010) (0.010) (0.010)

Precipitations Controls Yes Yes Yes
Household Controls Yes Yes Yes
State FE Yes Yes Yes
Wave FE Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes

R2 0.60 0.60 0.60
Observations 2442730 2442730 2442730

Notes: The dependent variable is a dummy variable (0,1) indicating the
ownership of the appliance. (1)-(3) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are conducted using survey weights.
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Table B15: The Impact of Temperature and Income on the Adoption of Cooling Appliances —
Nonlinear Specification

FE FE FE
(1) (2) (3)

CDD (100s) -0.000669 -0.00154 0.000413
(0.000) (0.001) (0.003)

CDD
2

0.0000890 -0.000394
(0.000) (0.001)

CDD
3

0.0000307
(0.000)

Log(Income) 0.0413*** 0.0413*** 0.0413***
(0.003) (0.003) (0.003)

Precipitations Controls Yes Yes Yes
Household Controls Yes Yes Yes
Household FE Yes Yes Yes
Wave FE Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes

R2 0.05 0.05 0.05
Observations 2432366 2432366 2432366

Notes: The dependent variable is a dummy variable (0,1) indicating the
ownership of the appliance. (1)-(3) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are conducted using survey weights
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Table B16: The Impact of Temperature and Income on the Adoption of Air-conditioning —
Nonlinear Specification

FE FE FE
(1) (2) (3)

CDD (100s) 0.000215 0.000398 0.000593
(0.000) (0.000) (0.001)

CDD
2

-0.0000187 -0.0000668
(0.000) (0.000)

CDD
3

0.00000306
(0.000)

Log(Income) 0.0134*** 0.0134*** 0.0134***
(0.001) (0.001) (0.001)

Precipitations Controls Yes Yes Yes
Household Controls Yes Yes Yes
Household FE Yes Yes Yes
Wave FE Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes

R2 0.02 0.02 0.02
Observations 2432366 2432366 2432366

Notes: The dependent variable is a dummy variable (0,1) indicating the
ownership of the appliance. (1)-(3) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are conducted using survey weights
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Table B17: The Impact of Temperature and Income on the Adoption of Coolers — Nonlinear
Specification

FE FE FE
(1) (2) (3)

CDD (100s) -0.000767* -0.00144 -0.000377
(0.000) (0.001) (0.003)

CDD
2

0.0000685 -0.000194
(0.000) (0.001)

CDD
3

0.0000167
(0.000)

Log(Income) 0.0348*** 0.0348*** 0.0348***
(0.003) (0.003) (0.003)

Precipitations Controls Yes Yes Yes
Household Controls Yes Yes Yes
Household FE Yes Yes Yes
Wave FE Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes

R2 0.06 0.06 0.06
Observations 2432366 2432366 2432366

Notes: The dependent variable is a dummy variable (0,1) indicating the
ownership of the appliance. (1)-(3) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are conducted using survey weights

Table B18: The Impact of Temperature and Income on the Prevalence of Cooling Appliances —
CDD18

Both Appliances Air Conditioner Evaporative Cooler

(1) (2) (3) (4) (5) (6)

CDD18 (100s) 0.00805*** -0.0136** 0.000358 -0.00645 0.00784*** -0.00608
(0.001) (0.006) (0.000) (0.004) (0.002) (0.006)

Log(Income) 0.0861*** 0.0624*** 0.0592*** 0.0517*** 0.0609*** 0.0456***
(0.007) (0.011) (0.006) (0.007) (0.010) (0.014)

CDD18 × Log(Income) 0.00229*** 0.000718 0.00147**
(0.001) (0.000) (0.001)

Precipitations Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

R2 0.51 0.51 0.21 0.21 0.51 0.51
Observations 2442730 2442730 2442730 2442730 2442730 2442730

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. (1)-(6)
clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are conducted using survey weights.
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Table B19: The Impact of Temperature and Income on the Adoption of Cooling Appliances —
CDD18

Both Appliances Air Conditioner Evaporative Cooler

(1) (2) (3) (4) (5) (6)

CDD18 (100s) -0.000642** -0.00286 0.000141 -0.000597 -0.000646** -0.00325
(0.000) (0.002) (0.000) (0.001) (0.000) (0.002)

Log(Income) 0.0413*** 0.0388*** 0.0134*** 0.0126*** 0.0348*** 0.0320***
(0.003) (0.003) (0.001) (0.002) (0.003) (0.003)

CDD18 × Log(Income) 0.000234 0.0000778 0.000274
(0.000) (0.000) (0.000)

Precipitations Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
Household FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

R2 0.05 0.05 0.02 0.02 0.06 0.06
Observations 2432366 2432366 2432366 2432366 2432366 2432366

Notes: The dependent variable is a dummy variable (0,1) indicating the ownership of the appliance. (1)-(6)
clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
conducted using survey weights.

Table B20: The Impact of Temperature and Income on the Prevalence of Cooling Appliances —
Logit

Both Appliances Air Conditioner Evaporative Cooler

(1) (2) (3) (4) (5) (6)

CDD (100s) 0.0162*** -0.0509*** 0.0000764 0.00233 0.0160*** -0.0537***
(0.002) (0.011) (0.000) (0.004) (0.002) (0.013)

Log(Income) 0.0826*** 0.0529*** 0.0460*** 0.0469*** 0.0587*** 0.0283*
(0.008) (0.012) (0.002) (0.002) (0.010) (0.015)

CDD × Log(Income) 0.00715*** -0.000223 0.00743***
(0.001) (0.000) (0.002)

Precipitations Controls Yes Yes Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Quadratic State × Year Trend Yes Yes Yes Yes Yes Yes

Observations 2442730 2442730 2442730 2442730 2442730 2442730

Notes: Average marginal effects (AMEs) are reported. The dependent variable is a dummy variable (0,1)
indicating the ownership of the appliance. (1)-(6) clustered standard errors at district level in parentheses. *
p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.
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Table B21: The Impact of Temperature and Income on the Prevalence of Cooling Appliances —
Multinomial Logit

Multinomial Logit Multinomial Logit
(1) (2)

CDD (100s) ×

Evaporative Cooler 0.0168*** -0.0483***
(0.002) (0.012)

Air Conditioner 0.00105** -0.00887**
(0.000) (0.003)

Log(Income) ×

Evaporative Cooler 0.0388*** 0.0100
(0.008) (0.013)

Air Conditioner 0.0484*** 0.0442***
(0.002) (0.002)

(CDD × Log(Income)) ×

Evaporative Cooler 0.00696***
(0.001)

Air Conditioner 0.00103***
(0.000)

Precipitations Controls Yes Yes
Household Controls Yes Yes
State FE Yes Yes
Wave FE Yes Yes
Quadratic State × Year Trend Yes Yes

Observations 2442958 2442958

Notes: Average marginal effects (AMEs) are reported. The dependent vari-
able is a dummy variable (0,1) indicating the ownership of the appliance. (1)-
(2) clustered standard errors at district level in parentheses. * p < 0.10, **
p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.
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C.1 Intensive Margin: Main Results

Table C1: The Impact of Temperature on Electricity Quantity using Temperature Bins

FE FE FE
(1) (2) (3)

< 11 -0.000434 -0.000842 -0.000748
(0.001) (0.001) (0.001)

11− 14 -0.000783 -0.000966* -0.000950*
(0.001) (0.001) (0.001)

14− 17 0.000180 0.0000694 0.0000429
(0.001) (0.001) (0.001)

20− 23 0.000454 0.000395 0.000365
(0.000) (0.000) (0.000)

23− 26 0.00111*** 0.00105*** 0.00100***
(0.000) (0.000) (0.000)

26− 29 0.00183*** 0.00176*** 0.00170***
(0.000) (0.000) (0.000)

29− 32 0.00212*** 0.00228*** 0.00226***
(0.000) (0.000) (0.000)

32− 35 0.00180*** 0.00200*** 0.00194***
(0.000) (0.000) (0.000)

≥ 35 0.00495*** 0.00527*** 0.00527***
(0.001) (0.001) (0.001)

Log(Income) 0.0797***
(0.006)

Precipitations Controls No Yes Yes
Household FE Yes Yes Yes
Month-Year FE Yes Yes Yes

R2 0.00 0.00 0.02
Observations 8317298 8317298 8317298

Notes: The dependent variable is log of monthly electricity quan-
tity (in kWh). Reference bin category is 17-20. (1), (2) and (3) clus-
tered standard errors at district level in parentheses. * p < 0.10, **
p < 0.05, *** p < 0.01. All regressions are conducted using survey
weights.
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Table C2: The Heterogeneous Impact of Temperature on Electricity Quantity using Temperature
Bins — Urban and Rural Areas

Rural Urban
(1) (2)

< 11 -0.000738 -0.000119
(0.001) (0.001)

11− 14 -0.000817 -0.00123*
(0.001) (0.001)

14− 17 0.000346 -0.000243
(0.001) (0.001)

20− 23 0.000303 0.000822
(0.000) (0.001)

23− 26 0.000805** 0.00163***
(0.000) (0.001)

26− 29 0.00139*** 0.00274***
(0.000) (0.001)

29− 32 0.00168*** 0.00364***
(0.001) (0.001)

32− 35 0.00151*** 0.00329***
(0.001) (0.001)

≥ 35 0.00375*** 0.00820***
(0.001) (0.001)

Log(Income) 0.0523*** 0.221***
(0.004) (0.013)

Precipitations Controls Yes Yes
Household FE Yes Yes
Month-Year FE Yes Yes

R2 0.01 0.06
Observations 2601924 5715374

Notes: The dependent variable is log of monthly elec-
tricity quantity (in kWh). Reference bin category is 17-
20. (1) and (2) clustered standard errors at district level
in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
All regressions are conducted using survey weights.
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Table C3: The Heterogeneous Impact of Temperature on Electricity Quantity using Temperature
Bins — Income Levels

Poor Middle Rich
(1) (2) (3)

< 11 0.00197* -0.000227 -0.00201**
(0.001) (0.001) (0.001)

11− 14 0.00199** -0.00164*** -0.000513
(0.001) (0.001) (0.001)

14− 17 0.000164 0.000495 -0.00128
(0.001) (0.001) (0.001)

20− 23 0.000611 0.000506 -0.000400
(0.001) (0.000) (0.001)

23− 26 0.000999** 0.000968** 0.000949*
(0.000) (0.000) (0.001)

26− 29 0.00181*** 0.00165*** 0.00185***
(0.001) (0.000) (0.001)

29− 32 0.00187*** 0.00213*** 0.00294***
(0.001) (0.001) (0.001)

32− 35 0.00150** 0.00168*** 0.00319***
(0.001) (0.001) (0.001)

≥ 35 0.00422*** 0.00449*** 0.00814***
(0.001) (0.001) (0.001)

Log(Income) 0.108*** 0.0610*** 0.117***
(0.010) (0.004) (0.013)

Precipitations Controls Yes Yes Yes
Household FE Yes Yes Yes
Month-Year FE Yes Yes Yes

R2 0.02 0.01 0.04
Observations 1062253 4879764 2375281

Notes: The dependent variable is log of monthly electricity quantity
(in kWh). Reference bin category is 17-20. ”Poor”, ”Middle” and
”Rich” respectively refers to households between the 1st and 2nd
decile, between the 3rd and 8th decile, and between the 9th and 10th
decile. (1), (2) and (3) clustered standard errors at district level in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
conducted using survey weights.

56



Table C4: The Impact of Temperature on Electricity Quantity using Temperature Bins — Income
Levels and Urban and Rural Areas

Rural Urban

Poor Middle Rich Poor Middle Rich
(1) (2) (3) (4) (5) (6)

< 11 0.00189* -0.000497 -0.00168* 0.00242 0.000880 -0.00175
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

11− 14 0.00235** -0.00153** -0.000875 -0.000291 -0.00188** -0.00103
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

14− 17 0.000224 0.000156 0.000230 0.000353 0.00165* -0.00282
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

20− 23 0.000556 0.000149 -0.000177 0.00135* 0.00166** -0.000534
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

23− 26 0.000997** 0.000620 0.000675 0.00147** 0.00209*** 0.000922
(0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

26− 29 0.00156** 0.00111** 0.00180*** 0.00361*** 0.00326*** 0.00186**
(0.001) (0.000) (0.001) (0.001) (0.001) (0.001)

29− 32 0.00163*** 0.00143** 0.00219*** 0.00353*** 0.00402*** 0.00323***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

32− 35 0.00128* 0.00117** 0.00259*** 0.00316*** 0.00334*** 0.00343***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

≥ 35 0.00387*** 0.00329*** 0.00530*** 0.00607*** 0.00749*** 0.00973***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

Log(Income) 0.0989*** 0.0441*** 0.0485*** 0.205*** 0.184*** 0.266***
(0.010) (0.004) (0.005) (0.015) (0.012) (0.016)

Precipitations Controls Yes Yes Yes Yes Yes Yes
Household FE Yes Yes Yes Yes Yes Yes
Month-Year FE Yes Yes Yes Yes Yes Yes

R2 0.02 0.01 0.01 0.05 0.04 0.09
Observations 550374 1636916 414634 511879 3242848 1960647

Notes: The dependent variable is log of monthly electricity quantity (in kWh). Reference bin category is 17-
20. ’Poor’, ’Middle’ and ’Rich’ respectively refer to households between the 1st and 2nd decile, between the
3rd and 8th decile, and between the 9th and 10th decile. (1) to (6) clustered standard errors at district level
in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.
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Table C5: The Heterogeneous Impact of Temperature on Electricity Quantity using Temperature
Bins — Technology

Air Conditioner Evaporative Cooler
(1) (2)

< 11 -0.00257* -0.00316**
(0.001) (0.002)

11− 14 0.000296 -0.00301***
(0.001) (0.001)

14− 17 -0.00191 -0.00158
(0.002) (0.001)

20− 23 0.0000987 -0.00124
(0.001) (0.001)

23− 26 0.00169*** -0.000260
(0.001) (0.001)

26− 29 0.00228*** 0.000805
(0.001) (0.001)

29− 32 0.00441*** 0.00167**
(0.001) (0.001)

32− 35 0.00469*** 0.00176**
(0.001) (0.001)

≥ 35 0.0112*** 0.00469***
(0.002) (0.001)

Log(Income) 0.169*** 0.0493***
(0.021) (0.004)

Precipitations Controls Yes Yes
Household FE Yes Yes
Month-Year FE Yes Yes

R2 0.05 0.01
Observations 785745 3707868

Notes: The dependent variable is log of monthly electricity quantity
(in kWh). Reference bin category is 17-20. (1) and (2) clustered stan-
dard errors at district level in parentheses. * p < 0.10, ** p < 0.05, ***
p < 0.01. All regressions are conducted using survey weights.
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Table C6: The Heterogeneous Impact of Temperature on Electricity Quantity using Temperature
Bins — Technology and Income Level

Poor-Middle Rich

Air Conditioner Evaporative Cooler Air Conditioner Evaporative Cooler
(1) (2) (3) (4)

< 11 -0.000258 -0.00272 -0.00345** -0.00378*
(0.002) (0.002) (0.002) (0.002)

11− 14 0.0000337 -0.00396*** 0.000386 -0.000606
(0.001) (0.001) (0.001) (0.001)

14− 17 0.000766 -0.000738 -0.00257 -0.00274
(0.001) (0.001) (0.003) (0.002)

20− 23 -0.000252 -0.00144* 0.00200** 0.000356
(0.001) (0.001) (0.001) (0.001)

23− 26 0.000460 -0.000478 0.00200** 0.000356
(0.001) (0.001) (0.001) (0.001)

26− 29 0.00107 0.000535 0.00265** 0.00130
(0.001) (0.001) (0.001) (0.001)

29− 32 0.00118 0.000956 0.00576*** 0.00366***
(0.001) (0.001) (0.001) (0.001)

32− 35 0.00205** 0.00102 0.00572*** 0.00383***
(0.001) (0.001) (0.001) (0.001)

≥ 35 0.00123 0.00350*** 0.0147*** 0.00909***
(0.002) (0.001) (0.003) (0.002)

Log(Income) 0.0699*** 0.0378*** 0.198*** 0.0875***
(0.013) (0.003) (0.027) (0.011)

Precipitations Controls Yes Yes Yes Yes
Household FE Yes Yes Yes Yes
Month-Year FE Yes Yes Yes Yes

R2 0.01 0.01 0.06 0.02
Observations 161766 2264280 538787 1018452

Notes: The dependent variable is log of monthly electricity quantity (in kWh). Reference bin category is 17-
20. (1)-(4) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All
regressions are conducted using survey weights.
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C.2 Intensive Margin: Additional Figures

Figure C1: Electricity-temperature Response Function — 5-degree Temperature Bins
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C.3 Intensive Margin: Robustness Checks

Table C7: The Impact of Temperature on Electricity Quantity — Alternative Time Fixed Effects

FE FE FE FE
(1) (2) (3) (4)

< 11 -0.00204*** -0.000748 -0.00231*** -0.00102
(0.001) (0.001) (0.001) (0.001)

11− 14 -0.00209*** -0.000950* -0.00180*** -0.000620
(0.001) (0.001) (0.001) (0.001)

14− 17 0.000125 0.0000429 -0.0000898 -0.0000491
(0.001) (0.001) (0.001) (0.001)

20− 23 0.000130 0.000365 0.0000187 0.000392
(0.000) (0.000) (0.000) (0.000)

23− 26 0.00131*** 0.00100*** 0.00110*** 0.000985***
(0.000) (0.000) (0.000) (0.000)

26− 29 0.00208*** 0.00170*** 0.00209*** 0.00173***
(0.000) (0.000) (0.000) (0.000)

29− 32 0.00294*** 0.00226*** 0.00252*** 0.00206***
(0.000) (0.000) (0.000) (0.000)

32− 35 0.00268*** 0.00194*** 0.00246*** 0.00207***
(0.000) (0.000) (0.000) (0.000)

≥ 35 0.00656*** 0.00527*** 0.00523*** 0.00506***
(0.001) (0.001) (0.001) (0.001)

Log(Income) 0.0938*** 0.0797*** 0.0797*** 0.0803***
(0.007) (0.006) (0.006) (0.006)

Precipitations Controls Yes Yes Yes Yes
Household FE Yes Yes Yes Yes
Month FE Yes No No No
Month-Year FE No Yes No Yes
Month-Year Trend No No Yes No
Quadratic State × Year Trend No No No Yes

R2 0.03 0.02 0.02 0.02
Observations 8317298 8317298 8317298 8317298

Notes: Column (2) shows main specification results. The dependent variable is log of
monthly electricity quantity (in kWh). Reference bin category is 17-20. (1), (2), (3) and (4)
clustered std. errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
All regressions are conducted using survey weights.
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Table C8: The Impact of Temperature on Electricity Quantity — Alternative Time-Invariant
Fixed Effects

FE FE FE
(1) (2) (3)

< 11 -0.000748 -0.000505 -0.00293*
(0.001) (0.001) (0.002)

11− 14 -0.000950* -0.000911 0.00192*
(0.001) (0.001) (0.001)

14− 17 0.0000429 0.000380 -0.000481
(0.001) (0.001) (0.001)

20− 23 0.000365 0.000456 -0.0000230
(0.000) (0.000) (0.001)

23− 26 0.00100*** 0.00113*** 0.00202***
(0.000) (0.000) (0.001)

26− 29 0.00170*** 0.00181*** 0.00506***
(0.000) (0.000) (0.001)

29− 32 0.00226*** 0.00246*** 0.00751***
(0.000) (0.000) (0.001)

32− 35 0.00194*** 0.00198*** 0.00416***
(0.000) (0.000) (0.001)

≥ 35 0.00527*** 0.00559*** 0.0108***
(0.001) (0.001) (0.001)

Log(Income) 0.0797*** 0.188*** 0.232***
(0.006) (0.010) (0.014)

Precipitations Controls Yes Yes Yes
Household FE Yes No No
District FE No Yes No
State FE No No Yes
Month-Year FE Yes Yes Yes

R2 0.02 0.10 0.13
Observations 8317298 8319814 8319814

Notes: Column (1) shows main specification results. The depen-
dent variable is log of monthly electricity quantity (in kWh). Refer-
ence bin category is 17-20. (1), (2) and (3) clustered standard errors
at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
All regressions are conducted using survey weights.
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Table C9: The Impact of Temperature on Electricity Quantity — Electricity in Level

FE FE FE
(1) (2) (3)

< 11 -0.440*** -0.508*** -0.493***
(0.155) (0.157) (0.154)

11− 14 -0.462*** -0.494*** -0.491***
(0.111) (0.113) (0.114)

14− 17 -0.0516 -0.0705 -0.0747
(0.121) (0.120) (0.121)

20− 23 -0.0589 -0.0703 -0.0750
(0.070) (0.070) (0.070)

23− 26 0.0503 0.0382 0.0307
(0.050) (0.050) (0.049)

26− 29 0.132** 0.120** 0.110*
(0.058) (0.059) (0.059)

29− 32 0.191*** 0.219*** 0.217***
(0.072) (0.071) (0.071)

32− 35 0.0976 0.130* 0.120
(0.075) (0.074) (0.075)

≥ 35 0.735*** 0.789*** 0.789***
(0.173) (0.174) (0.172)

Log(Income) 12.83***
(1.175)

Precipitations Controls Yes Yes Yes
Household FE Yes Yes Yes
Month-Year FE Yes Yes Yes

R2 0.00 0.00 0.01
Observations 8317298 8317298 8317298

Notes: The dependent variable is monthly electricity quantity
(in kWh). Reference category is bin 17-20. (1), (2) and (3) clus-
tered standard errors at district level in parentheses. * p < 0.10,
** p < 0.05, *** p < 0.01. All regressions are conducted using
survey weights.
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Table C10: The Impact of Temperature on Electricity Quantity — CRU Weather Data

FE FE FE
(1) (2) (3)

T (°C) 0.00449*** 0.00473*** 0.00458***
(0.001) (0.001) (0.001)

Log(Income) 0.0778***
(0.006)

Precipitations Controls No Yes Yes
Household FE Yes Yes Yes
Month-Year FE Yes Yes Yes

R2 0.00 0.00 0.02
Observations 8317298 8317298 8317298

Notes: The dependent variable is log of monthly electricity quan-
tity (in kWh). (1), (2) and (3) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All
regressions are conducted using survey weights.
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Table C11: The Impact of Temperature on Electricity Quantity — Alternative Standard Errors
Specifications

District State
(1) (2)

< 11 -0.000748 -0.000748
(0.001) (0.001)

11− 14 -0.000950* -0.000950
(0.001) (0.001)

14− 17 0.0000429 0.0000429
(0.001) (0.001)

20− 23 0.000365 0.000365
(0.000) (0.001)

23− 26 0.00100*** 0.00100**
(0.000) (0.000)

26− 29 0.00170*** 0.00170***
(0.000) (0.000)

29− 32 0.00226*** 0.00226***
(0.000) (0.000)

32− 35 0.00194*** 0.00194***
(0.000) (0.001)

≥ 35 0.00527*** 0.00527***
(0.001) (0.001)

Log(Income) 0.0797*** 0.0797***
(0.006) (0.020)

Precipitations Controls Yes Yes
Household FE Yes Yes
Month-Year FE Yes Yes

R2 0.02 0.02
Observations 8317298 8317298

Notes: Column (1) shows main specification results.
The dependent variable is log of monthly electricity
quantity (in kWh). Reference bin category is 17-20.
(1) clustered standard errors at district level in paren-
theses. (2) clustered standard errors at state level in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All
regressions are conducted using survey weights.
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Table C12: The Impact of Temperature on Electricity Quantity — 5-degree Temperature Bins

FE FE FE
(1) (2) (3)

< 10 -0.000366 -0.000703 -0.000631
(0.001) (0.001) (0.001)

10− 15 -0.000497 -0.000643 -0.000650
(0.000) (0.000) (0.000)

20− 25 0.000644** 0.000621** 0.000587**
(0.000) (0.000) (0.000)

25− 30 0.00170*** 0.00169*** 0.00164***
(0.000) (0.000) (0.000)

30− 35 0.00172*** 0.00190*** 0.00188***
(0.000) (0.000) (0.000)

≥ 35 0.00466*** 0.00493*** 0.00490***
(0.001) (0.001) (0.001)

Log(Income) 0.0797***
(0.006)

Precipitations Controls No Yes Yes
Household FE Yes Yes Yes
Month-Year FE Yes Yes Yes

R2 0.00 0.00 0.02
Observations 8317298 8317298 8317298

Notes: The dependent variable is log of monthly electricity quan-
tity (in kWh). Reference category is bin 15-20. (1), (2) and (3) clus-
tered standard errors at district level in parentheses. * p < 0.10, **
p < 0.05, *** p < 0.01. All regressions are conducted using survey
weights.
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Table C13: The Impact of Temperature on Electricity Quantity — Non-linearities

FE FE FE
(1) (2) (3)

T (°C) 0.00479*** 0.00170 0.00333***
(0.001) (0.001) (0.001)

T2 0.0000742*** -0.0000422
(0.000) (0.000)

T3 0.00000221
(0.000)

Log(Income) 0.0796*** 0.0796*** 0.0796***
(0.006) (0.006) (0.006)

Precipitations Controls Yes Yes Yes
Household FE Yes Yes Yes
Month-Year FE Yes Yes Yes

R2 0.02 0.02 0.02
Observations 8293964 8293964 8293964

Notes: The dependent variable is log of monthly electricity quantity
(in kWh). (1), (2) and (3) clustered std. errors at district level in paren-
theses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
conducted using survey weights.

Table C14: The Impact of Temperature on Electricity Quantity — Cooling Degree Days

FE FE FE
(1) (2) (3)

CDD (in 100s) 0.0149*** 0.0183*** 0.0174***
(0.003) (0.003) (0.003)

Log(Income) 0.0766***
(0.006)

Precipitations Controls No Yes Yes
Household FE Yes Yes Yes
Month-Year FE Yes Yes Yes

R2 0.00 0.00 0.02
Observations 8293964 8293964 8293964

Notes: The dependent variable is log of monthly electricity
quantity (in kWh). CDDs are constructed using 24 °C as thresh-
old. (1), (2) and (3) clustered standard errors at district level in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are conducted using survey weights.
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D.1 Mortality: Main Results

Table D1: Impact of Temperature on Mortality Rate

FE FE FE FE
(1) (2) (3) (4)

T (< 10) 0.00272 0.00275 0.00304
(0.002) (0.002) (0.002)

T (10− 15) 0.00241* 0.00249* 0.00276**
(0.001) (0.001) (0.001)

T (20− 25) 0.00202* 0.00211* 0.00211**
(0.001) (0.001) (0.001)

T (25− 30) 0.00161 0.00179 0.00202*
(0.001) (0.001) (0.001)

T (30− 35) 0.00247** 0.00263** 0.00307**
(0.001) (0.001) (0.001)

T (≥ 35) 0.00932*** 0.00944*** 0.00997***
(0.002) (0.002) (0.002)

P (2nd) -0.00645 0.00263 -0.00458
(0.025) (0.024) (0.025)

P (3rd) 0.0448 0.0560* 0.0469
(0.035) (0.033) (0.036)

H (0− 3) 0.000660 -0.000503
(0.003) (0.003)

H (3− 6) -0.00195* -0.00255**
(0.001) (0.001)

H (6− 9) 0.000907* 0.000412
(0.001) (0.001)

H (12− 15) 0.000170 0.000190
(0.001) (0.001)

H (15− 18) 0.000436 0.000914
(0.001) (0.001)

H (≥ 18) -0.000102 0.000755
(0.001) (0.001)

District FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes

R2 0.03 0.03 0.02 0.03
Observations 3908 3908 3908 3908

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated
period is 2014-2019. Reference category for temperature is bin 15-20 °C. Reference
category for humidity is bin 9-12 g/kg. (1)-(4) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
weighted by the square root of district population.
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Table D2: Impact of Temperature and Humidity Interactions on Mortality Rate

FE FE FE FE FE
(1) (2) (3) (4) (5)

T (< 10) 0.00305 0.00544 0.00306 0.00294 0.00297
(0.002) (0.006) (0.002) (0.002) (0.002)

T (10− 15) 0.00276** 0.00151 0.00276** 0.00279** 0.00279**
(0.001) (0.005) (0.001) (0.001) (0.001)

T (20− 25) 0.00211** -0.00547 0.00210** 0.00199* 0.00199*
(0.001) (0.003) (0.001) (0.001) (0.001)

T (25− 30) 0.00202* -0.00348 0.00202* 0.00187 0.00186
(0.001) (0.003) (0.001) (0.001) (0.001)

T (30− 35) 0.00307** 0.00642 0.00306** 0.00302** 0.00301**
(0.001) (0.004) (0.001) (0.001) (0.001)

T (≥ 35) 0.00996*** -0.0101 0.00994*** 0.000320 0.000195
(0.002) (0.011) (0.002) (0.003) (0.003)

Humidity × T (< 10) -0.000428
(0.001)

Humidity × T (10− 15) 0.0000728
(0.000)

Humidity × T (20− 25) 0.000585**
(0.000)

Humidity × T (25− 30) 0.000439**
(0.000)

Humidity × T (30− 35) -0.000197
(0.000)

Humidity × T (≥ 35) 0.00162*
(0.001)

T (≥ 35) × H (0− 3) 0.000500 0.00109
(0.001) (0.001)

T (≥ 35) × H (≥ 18) 0.000123*** 0.000124***
(0.000) (0.000)

Precipitation Terciles Yes Yes Yes Yes Yes
Humidity Bins Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes Yes

R2 0.03 0.03 0.03 0.04 0.04
Observations 3908 3908 3908 3908 3908

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated period is 2014-
2019. Reference category for temperature is bin 15-20 °C. Reference category for humidity is bin 9-12
g/kg. (1)-(4) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, ***
p < 0.01. All regressions are weighted by the square root of district population.
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Table D3: Impact of Temperature and Humidity on Mortality Rate — Urban and Rural Deaths

Rural Urban

(1) (2) (3) (4) (5) (6)

T (< 10) -0.00326 -0.00285 -0.00304 -0.00130 -0.00106 -0.00113
(0.005) (0.005) (0.005) (0.005) (0.006) (0.006)

T (10− 15) 0.00592* 0.00602* 0.00586* 0.00222 0.00261 0.00259
(0.003) (0.003) (0.003) (0.002) (0.002) (0.002)

T (20− 25) 0.000624 0.000549 0.000230 0.000751 0.000902 0.000851
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

T (25− 30) 0.000420 0.000623 0.000200 0.00176 0.00209 0.00203
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

T (30− 35) 0.00178 0.00230 0.00204 0.00230 0.00276 0.00279
(0.003) (0.002) (0.002) (0.002) (0.002) (0.002)

T (≥ 35) 0.00909** 0.00993*** -0.00191 0.00549* 0.00622** 0.00229
(0.004) (0.004) (0.005) (0.003) (0.003) (0.004)

P (2nd) 0.0563 0.0594 0.0632 0.0429 0.0416 0.0434
(0.061) (0.061) (0.061) (0.043) (0.044) (0.045)

P (3rd) 0.102 0.104 0.103 0.107** 0.105* 0.105*
(0.086) (0.087) (0.087) (0.053) (0.054) (0.054)

H (0− 3) -0.00230 -0.00123 -0.000814 -0.000762
(0.006) (0.006) (0.006) (0.006)

H (3− 6) -0.00406** -0.00304 -0.00113 -0.000847
(0.002) (0.002) (0.002) (0.002)

H (6− 9) 0.000427 0.000222 -0.000838 -0.000915
(0.001) (0.001) (0.001) (0.001)

H (12− 15) 0.00104 0.000933 -0.000723 -0.000746
(0.001) (0.001) (0.001) (0.001)

H (15− 18) 0.00136 0.00150 -0.0000322 0.0000330
(0.001) (0.001) (0.001) (0.001)

H (≥ 18) 0.00130 0.000335 0.000143 -0.000109
(0.002) (0.002) (0.001) (0.001)

T (≥ 35) × H (≥ 18) 0.000153** 0.0000533
(0.000) (0.000)

District FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes Yes Yes

R2 0.03 0.03 0.04 0.02 0.02 0.02
Observations 2520 2520 2520 1549 1549 1549

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated period is 2014-2019.
Reference category for temperature is bin 15-20 °C. Reference category for humidity is bin 9-12 g/kg. (1)-(6)
clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions
are weighted by the square root of district rural and urban population.
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Table D4: Impact of Temperature and Humidity on Mortality Rate — Share of Poverty

Below Median Above Median

(1) (2) (3) (4)

T (< 10) 0.000192 -0.000254 0.0354 0.0315
(0.002) (0.003) (0.027) (0.025)

T (10− 15) 0.00241 0.00312* 0.00462 0.00433
(0.002) (0.002) (0.004) (0.004)

T (20− 25) 0.000549 0.000314 0.00315** 0.00255
(0.001) (0.001) (0.002) (0.002)

T (25− 30) 0.000667 0.000827 0.00416** 0.00342*
(0.002) (0.002) (0.002) (0.002)

T (30− 35) 0.00204 0.00262 0.00625*** 0.00558***
(0.002) (0.002) (0.002) (0.002)

T (≥ 35) 0.00430* 0.00410 0.0173*** 0.00147
(0.003) (0.003) (0.004) (0.006)

P (2nd) 0.0272 0.0274 0.0915 0.100*
(0.023) (0.024) (0.056) (0.057)

P (3rd) 0.0245 0.0176 0.196*** 0.201***
(0.033) (0.034) (0.068) (0.069)

H (0− 3) 0.00463 0.0479
(0.007) (0.031)

H (3− 6) -0.00203 -0.00253
(0.002) (0.003)

H (6− 9) -0.000357 0.000601
(0.001) (0.001)

H (12− 15) -0.000987 0.000670
(0.001) (0.001)

H (15− 18) 0.000440 0.00133
(0.001) (0.001)

H (≥ 18) 0.000790 -0.000446
(0.001) (0.002)

T (≥ 35) × H (≥ 18) 0.0000199 0.000168**
(0.000) (0.000)

District FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes

R2 0.04 0.04 0.06 0.07
Observations 1369 1369 1384 1384

Notes: The dependent variable is the natural logarithm of mortality rate. Esti-
mated period is 2014-2019. Reference category is bin 15-20 °C. Reference category
for humidity is bin 9-12 g/kg. (1)-(4) clustered standard errors at district level in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by
the square root of district population.
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Table D5: Impact of Temperature and Humidity on Mortality Rate — Share of Poverty and
Urban and Rural Deaths

Rural Urban

Below Above Below Above

(1) (2) (3) (4) (5) (6) (7) (8)

T (< 10) -0.00501 -0.00420 0.0619 0.0539 0.000282 0.000651 -0.0213 -0.0177
(0.005) (0.005) (0.049) (0.047) (0.005) (0.006) (0.023) (0.023)

T (10− 15) 0.00417 0.00521 0.00984 0.00981 0.00241 0.00253 0.00586** 0.00591*
(0.003) (0.003) (0.007) (0.007) (0.002) (0.003) (0.003) (0.003)

T (20− 25) -0.00191 -0.00281 0.00201 0.000751 0.000855 0.00160 0.00126 0.00234
(0.002) (0.002) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002)

T (25− 30) -0.00193 -0.00242 0.00115 -0.0000706 0.00129 0.00220 0.00418 0.00538**
(0.002) (0.002) (0.003) (0.004) (0.002) (0.002) (0.003) (0.003)

T (30− 35) -0.000230 0.000530 0.00290 0.00192 0.00242 0.00314 0.00422 0.00501
(0.003) (0.003) (0.004) (0.004) (0.003) (0.002) (0.004) (0.004)

T (≥ 35) 0.00450 0.00427 0.0146** -0.00494 0.00435 0.00367 0.0109** 0.00932
(0.005) (0.005) (0.006) (0.009) (0.004) (0.005) (0.005) (0.009)

P (2nd) 0.0253 0.0152 0.112 0.140 0.0363 0.0450 0.0834 0.0785
(0.037) (0.041) (0.113) (0.117) (0.051) (0.053) (0.075) (0.080)

P (3rd) 0.0214 0.00198 0.203 0.230* 0.0823 0.0935* 0.197* 0.186*
(0.061) (0.063) (0.135) (0.139) (0.052) (0.056) (0.110) (0.108)

H (0− 3) -0.00115 0.0399 -0.00123 —
(0.006) (0.047) (0.006) (—)

H (3− 6) -0.00203 -0.00321 0.0000841 -0.00893
(0.002) (0.004) (0.002) (0.006)

H (6− 9) 0.00202 -0.000896 -0.00282** 0.00149
(0.001) (0.002) (0.001) (0.002)

H (12− 15) 0.000118 0.00158 -0.000873 -0.00120
(0.002) (0.002) (0.001) (0.002)

H (15− 18) 0.00251 0.00132 -0.000898 0.00102
(0.002) (0.002) (0.001) (0.002)

H (≥ 18) 0.00367 -0.00167 -0.00115 0.000536
(0.002) (0.002) (0.002) (0.003)

T (≥ 35) × H (≥ 18) 0.0000170 0.000208** 0.0000296 0.0000268
(0.000) (0.000) (0.000) (0.000)

District FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.05 0.07 0.03 0.04 0.02 0.03 0.04 0.05
Observations 1208 1208 1312 1312 856 856 693 693

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated period is 2014-2019. Reference
category is bin 15-20 °C. Reference category for humidity is bin 9-12 g/kg. (1)-(8) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of district
population.
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D.2 Mortality: Robustness

Table D6: Impact of Temperature on Mortality Rate — CHPS Sample

FE FE FE FE
(1) (2) (3) (4)

T (< 10) 0.00566** 0.00240 -0.000651 -0.000167
(0.003) (0.002) (0.002) (0.002)

T (10− 15) 0.0111*** 0.00286** 0.00250 0.00291*
(0.004) (0.001) (0.002) (0.002)

T (20− 25) 0.00849*** 0.00121 0.00214** 0.00210**
(0.002) (0.001) (0.001) (0.001)

T (25− 30) 0.00854*** 0.00119 0.00234** 0.00290**
(0.002) (0.001) (0.001) (0.001)

T (30− 35) 0.00580** 0.00301** 0.00376*** 0.00457***
(0.003) (0.001) (0.001) (0.001)

T (≥ 35) 0.0129*** 0.00971*** 0.00973*** 0.0101***
(0.004) (0.002) (0.002) (0.002)

P (2nd) 0.0543*
(0.029)

P (3rd) 0.113***
(0.038)

District FE No Yes Yes Yes
Year FE No Yes Yes Yes
Quadratic Trend × Region No No Yes Yes

R2 0.15 0.02 0.04 0.02
Observations 2758 2753 2753 2753

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated
period is 2014-2019. Reference category is bin 15-20 °C. (1)-(4) clustered standard
errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All
regressions are weighted by the square root of district population.
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Table D7: Impact of Temperature and Humidity on Mortality Rate — CHPS Sample

FE FE FE FE
(1) (2) (3) (4)

T (< 10) -0.000167 -0.000757 -0.000937
(0.002) (0.003) (0.003)

T (10− 15) 0.00291* 0.00302* 0.00293*
(0.002) (0.002) (0.002)

T (20− 25) 0.00210** 0.00219** 0.00199**
(0.001) (0.001) (0.001)

T (25− 30) 0.00290** 0.00315*** 0.00288***
(0.001) (0.001) (0.001)

T (30− 35) 0.00457*** 0.00493*** 0.00480***
(0.001) (0.001) (0.001)

T (≥ 35) 0.0101*** 0.0105*** 0.000885
(0.002) (0.002) (0.003)

P (2nd) 0.0543* 0.0495* 0.0551* 0.0580*
(0.029) (0.029) (0.030) (0.030)

P (3rd) 0.113*** 0.106*** 0.112*** 0.111***
(0.038) (0.036) (0.039) (0.038)

H (0− 3) 0.00348 0.00379 0.00447
(0.006) (0.007) (0.007)

H (3− 6) -0.00225* -0.00307** -0.00231*
(0.001) (0.001) (0.001)

H (6− 9) 0.00117** 0.000528 0.000359
(0.001) (0.001) (0.001)

H (12− 15) -0.0000303 -0.0000257 -0.0000989
(0.001) (0.001) (0.001)

H (15− 18) -0.000202 0.000436 0.000566
(0.001) (0.001) (0.001)

H (≥ 18) -0.000666 0.000450 -0.000270
(0.001) (0.001) (0.001)

T (≥ 35) × H (≥ 18) 0.000126**
(0.000)

District FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes

R2 0.04 0.03 0.05 0.05
Observations 2753 2753 2753 2753

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated
period is 2014-2019. Reference category is bin 15-20 °C. Reference category for humid-
ity is bin 9-12 g/kg. (1)-(4) clustered standard errors at district level in parentheses. *
p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of
district population.
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Table D8: Impact of Temperature on Mortality Rate — Alternative Fixed Effects

FE FE FE FE FE FE
(1) (2) (3) (4) (5) (6)

T (< 10) 0.000827 0.00376* 0.00293 0.00327 0.00355* 0.00305
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

T (10− 15) 0.0113** 0.00261** 0.00250* 0.00288** 0.00304** 0.00276**
(0.005) (0.001) (0.001) (0.001) (0.001) (0.001)

T (20− 25) 0.0107*** 0.00187* 0.00237** 0.00169 0.000173 0.00211**
(0.003) (0.001) (0.001) (0.001) (0.001) (0.001)

T (25− 30) 0.0100*** 0.00151 0.00235* 0.00141 -0.000250 0.00202*
(0.003) (0.001) (0.001) (0.001) (0.001) (0.001)

T (30− 35) 0.00884*** 0.00256** 0.00329** 0.00238* 0.000195 0.00307**
(0.003) (0.001) (0.001) (0.001) (0.001) (0.001)

T (≥ 35) 0.0160*** 0.00955*** 0.0107*** 0.00960*** 0.00893*** 0.00996***
(0.003) (0.002) (0.002) (0.002) (0.002) (0.002)

P (2nd) -0.178*** -0.000990 -0.00400 -0.00977 -0.0151 -0.00458
(0.064) (0.025) (0.026) (0.025) (0.023) (0.025)

P (3rd) -0.0479 0.0601* 0.0493 0.0448 0.0103 0.0469
(0.122) (0.036) (0.038) (0.036) (0.035) (0.036)

H (0− 3) 0.00509** 0.0000676 -0.00393 -0.0000155 0.000683 -0.000505
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003)

H (3− 6) 0.00879*** -0.00230** -0.00373*** -0.00265** -0.00199* -0.00255**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

H (6− 9) -0.00220* 0.000505 0.000527 0.000472 0.000265 0.000412
(0.001) (0.001) (0.001) (0.000) (0.000) (0.001)

H (12− 15) -0.00232** -0.0000733 0.000179 -0.000329 -0.000420 0.000190
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

H (15− 18) 0.000658 0.000175 0.00102 0.000286 0.000119 0.000915
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

H (≥ 18) 0.000680 -0.000351 0.000909 -0.000119 0.000326 0.000756
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

District FE No Yes Yes Yes Yes Yes
Year FE No Yes Yes Yes Yes Yes
Year × Region No No Yes No No No
Linear Trend × Region No No No Yes No No
Linear Trend × State No No No No Yes No
Quadratic Trend × Region No No No No No Yes

R2 0.23 0.02 0.03 0.03 0.10 0.03
Observations 3911 3908 3908 3908 3908 3908

Notes: Column (6) shows main specification results. The dependent variable is the natural logarithm of
mortality rate. Estimated period is 2014-2019. Reference category for temperature is bin 15-20 ° C. Reference
category for humidity is bin 9-12 g/kg. (1)-(6) clustered standard errors at district level in parentheses. *
p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of district population.
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Table D9: Impact of Temperature on Mortality Rate — Controlling for Income per capita

FE FE
(1) (2)

T (< 10) -0.000757 -0.000829
(0.003) (0.003)

T (10− 15) 0.00302* 0.00300*
(0.002) (0.002)

T (20− 25) 0.00219** 0.00219**
(0.001) (0.001)

T (25− 30) 0.00315*** 0.00316***
(0.001) (0.001)

T (30− 35) 0.00493*** 0.00494***
(0.001) (0.001)

T (≥ 35) 0.0105*** 0.0105***
(0.002) (0.002)

P (2nd) 0.0551* 0.0553*
(0.030) (0.030)

P (3rd) 0.112*** 0.112***
(0.039) (0.039)

H (0− 3) 0.00379 0.00365
(0.007) (0.007)

H (3− 6) -0.00307** -0.00313**
(0.001) (0.001)

H (6− 9) 0.000528 0.000526
(0.001) (0.001)

H (12− 15) -0.0000257 -0.0000399
(0.001) (0.001)

H (15− 18) 0.000436 0.000406
(0.001) (0.001)

H (≥ 18) 0.000450 0.000418
(0.001) (0.001)

Income per capita Yes Yes
District FE Yes Yes
Year FE Yes Yes
Quadratic Trend × State Yes Yes

R2 0.05 0.05
Observations 2753 2753

Notes: The dependent variable is the natural logarithm
of mortality rate. The estimated period is 2014-2019.
Reference category for temperature is bin 15-20 °C. Ref-
erence category for humidity is bin 9-12 g/kg. (1) and (2)
clustered standard errors at district level in parentheses
respectively. * p < 0.10, ** p < 0.05, *** p < 0.01. All
regressions are weighted by the square root of district
population.
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Table D10: Impact of Temperature on Mortality Rate — State-level Clustered Standard Errors

FE FE
(1) (2)

T (< 10) 0.00305 0.00305
(0.002) (0.003)

T (10− 15) 0.00276** 0.00276
(0.001) (0.003)

T (20− 25) 0.00211** 0.00211
(0.001) (0.001)

T (25− 30) 0.00202* 0.00202
(0.001) (0.001)

T (30− 35) 0.00307** 0.00307**
(0.001) (0.001)

T (≥ 35) 0.00996*** 0.00996*
(0.002) (0.005)

P (2nd) -0.00458 -0.00458
(0.025) (0.018)

P (3rd) 0.0469 0.0469
(0.036) (0.041)

H (0− 3) -0.000505 -0.000505
(0.003) (0.003)

H (3− 6) -0.00255** -0.00255
(0.001) (0.002)

H (6− 9) 0.000412 0.000412
(0.001) (0.001)

H (12− 15) 0.000190 0.000190
(0.001) (0.002)

H (15− 18) 0.000915 0.000915
(0.001) (0.001)

H (≥ 18) 0.000756 0.000756
(0.001) (0.001)

District FE Yes Yes
Year FE Yes Yes
Quadratic Trend × Region Yes Yes

R2 0.03 0.03
Observations 3908 3908

Notes: Column (1) shows main specification results. The
dependent variable is the natural logarithm of mortality
rate. The estimated period is 2014-2019. Reference cate-
gory for temperature is bin 15-20 °C . Reference category
for humidity is bin 9-12 g/kg. (1) clustered standard er-
rors at district level in parentheses. (2) clustered standard
errors at state level in parentheses * p < 0.10, ** p < 0.05,
*** p < 0.01. All regressions are weighted by the square
root of district population.
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Table D11: Impact of Temperature on Mortality Rate — 3-degree Bins

FE FE FE FE
(1) (2) (3) (4)

T (< 11) -0.0000731 0.00124 0.000274 0.000274
(0.001) (0.001) (0.002) (0.002)

T (11− 14) 0.0159*** 0.000365 0.0000645 0.0000645
(0.003) (0.001) (0.002) (0.002)

T (14− 17) -0.0126*** -0.00269** -0.00315** -0.00315**
(0.003) (0.001) (0.001) (0.001)

T (20− 23) 0.00437* 0.000784 0.00115 0.00115
(0.002) (0.001) (0.001) (0.001)

T (23− 26) 0.00688*** 0.000453 0.000512 0.000512
(0.002) (0.001) (0.001) (0.001)

T (26− 29) 0.00433** -0.000400 0.000172 0.000172
(0.002) (0.001) (0.001) (0.001)

T (29− 32) 0.00525** -0.000259 0.000205 0.000205
(0.002) (0.001) (0.001) (0.001)

T (32− 35) 0.00217 -0.000636 0.0000182 0.0000182
(0.002) (0.002) (0.002) (0.002)

T (≥ 35) 0.0129*** 0.00629*** 0.00691*** 0.00691***
(0.003) (0.002) (0.002) (0.002)

P (2nd) -0.178*** -0.0146 -0.0164 -0.0164
(0.044) (0.025) (0.025) (0.025)

P (3rd) -0.0868 0.0387 0.0286 0.0286
(0.075) (0.036) (0.035) (0.035)

H (0− 3) 0.00121 0.000491 -0.0000610 -0.0000610
(0.002) (0.003) (0.003) (0.003)

H (3− 6) 0.00624*** -0.00205* -0.00210* -0.00210*
(0.001) (0.001) (0.001) (0.001)

H (6− 9) -0.00141 0.000720 0.000717 0.000717
(0.001) (0.001) (0.001) (0.001)

H (12− 15) -0.00206** -0.000322 0.0000720 0.0000720
(0.001) (0.001) (0.001) (0.001)

H (15− 18) -0.000258 -0.000425 0.000373 0.000373
(0.001) (0.001) (0.001) (0.001)

H (≥ 18) 0.000740 -0.00120 -0.0000892 -0.0000892
(0.001) (0.001) (0.001) (0.001)

District FE No Yes Yes Yes
Year FE No Yes Yes Yes
Quadratic Trend × Region No No Yes Yes

R2 0.27 0.02 0.03 0.03
Observations 3911 3908 3908 3908

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated
period is 2014-2019. Reference category for temperature is bin 17-20 °C. Reference
category for humidity is bin 9-12 g/kg. (1)-(4) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted
by the square root of district population.
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Table D12: Protective Effect of Heat Adaptation

Temperature Humidity Temperature × Humidity

Air Conditioner Cooler Both Air Conditioner Cooler Both Air Conditioner Cooler Both
(1) (2) (3) (4) (5) (6) (7) (8) (9)

T (< 10) 0.000184 -0.000632 0.0000770 -0.000653 -0.000838 -0.000721 0.000312 -0.000760 0.000235
(0.003) (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.003)

T (10− 15) 0.00335** 0.00270* 0.00300* 0.00300* 0.00310** 0.00308** 0.00316** 0.00274* 0.00305*
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

T (20− 25) 0.00229** 0.00199** 0.00209** 0.00221** 0.00218** 0.00220** 0.00226** 0.00200** 0.00218**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

T (25− 30) 0.00321*** 0.00287*** 0.00295*** 0.00318*** 0.00313*** 0.00315*** 0.00312*** 0.00288*** 0.00302***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

T (30− 35) 0.00502*** 0.00462*** 0.00473*** 0.00495*** 0.00496*** 0.00498*** 0.00500*** 0.00469*** 0.00489***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

T (≥ 35) 0.0120*** 0.0160*** 0.0161*** 0.0105*** 0.0106*** 0.0106*** 0.00563** 0.00662** 0.00593**
(0.002) (0.004) (0.005) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003)

T (≥ 35) × H (≥ 18) 0.0000866** 0.0000816 0.0000947*
(0.000) (0.000) (0.000)

AC × T (≥ 35) -0.0270*** -0.0206**
(0.009) (0.009)

Cooler × T (≥ 35) -0.00769* -0.00629
(0.004) (0.005)

AC × H (≥ 18) -0.000662 -0.000685
(0.002) (0.002)

Cooler × H (≥ 18) 0.000507 0.000538
(0.001) (0.001)

AC × T (≥ 35) × H (≥ 18) -0.000422*** -0.000384***
(0.000) (0.000)

Cooler × T (≥ 35) × H (≥ 18) -0.0000512 -0.0000238

Precipitation Terciles Yes Yes Yes Yes Yes Yes Yes Yes Yes
Humidity Bins Yes Yes Yes Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Observations 2753 2753 2753 2753 2753 2753 2753 2753 2753

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated period is 2014-2019. Regressions also include all the temperature
and humidity bins, and precipitation terciles. Reference category for temperature is bin 15-20 ° C. Reference category for humidity is bin 9-12 g/kg.
(1)-(9) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of
district population.
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Table D13: Protective Effect of Heat Adaptation — State-level Penetration Rates

Temperature Humidity Temperature × Humidity

Air Conditioner Cooler Both Air Conditioner Cooler Both Air Conditioner Cooler Both
(1) (2) (3) (4) (5) (6) (7) (8) (9)

AC × T (≥ 35) -0.0444*** -0.0373***
(0.013) (0.014)

Cooler × T (≥ 35) -0.0109** -0.00770
(0.005) (0.005)

AC × H (≥ 18) -0.00228 -0.00521
(0.005) (0.005)

Cooler × H (≥ 18) -0.000857 -0.000746
(0.002) (0.002)

AC × T (≥ 35) × H (≥ 18) -0.000390** -0.000397**
(0.000) (0.000)

Cooler × T (≥ 35) × H (≥ 18) -0.0000427 -0.00000122
(0.000) (0.000)

Precipitation Terciles Yes Yes Yes Yes Yes Yes Yes Yes Yes
Humidity Bins Yes Yes Yes Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes Yes Yes Yes Yes Yes Yes

R2 0.05 0.06 0.06 0.05 0.06 0.07 0.05 0.06 0.06
Observations 2753 2753 2753 2753 2753 2753 2753 2753 2753

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated period is 2014-2019. Reference category is bin 15-20 °C. Reference category for humidity
is bin 9-12 g/kg. (1)-(9) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of
district population.
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Table D14: Protective Effect of Heat Adaptation — Interactions with All Temperature Bins

Air Conditioner Evaporative Cooler Both
(1) (2) (3)

AC × T (≤ 10) 0.00109 -0.000206
(0.009) (0.009)

Cooler × T (≤ 10) 0.0000828 0.000279
(0.003) (0.003)

AC × T (10− 15) -0.0114* -0.0102
(0.006) (0.007)

Cooler × T (10− 15) -0.00219 -0.000694
(0.004) (0.004)

AC × T (20− 25) -0.00499 -0.00523
(0.004) (0.004)

Cooler × T (20− 25) -0.00195 -0.00153
(0.002) (0.002)

AC × T (25− 30) -0.00293 -0.00278
(0.005) (0.005)

Cooler × T (25− 30) 0.000724 0.00104
(0.002) (0.002)

AC × T (30− 35) -0.00903 -0.0101
(0.006) (0.006)

Cooler × T (30− 35) 0.00309 0.00365*
(0.002) (0.002)

AC × T (≥ 35) -0.0246** -0.0155
(0.010) (0.011)

Cooler × T (≥ 35) -0.00752 -0.00646
(0.005) (0.005)

Precipitation Terciles Yes Yes Yes
Humidity Bins Yes Yes Yes
District FE Yes Yes Yes
Year FE Yes Yes Yes
Quadratic Trend × Region Yes Yes Yes

R2 0.05 0.06 0.06
Observations 2753 2753 2753

Notes: The dependent variable is the natural logarithm of mortality rate. Estimated
period is 2014-2019. Reference category for temperature is bin 15-20 ° C. Reference
category for humidity is bin 9-12 g/kg. (1)-(3) clustered standard errors at district
level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted
by the square root of district population.
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Table D15: Protective Effect of Heat Adaptation — Controlling for Income

FE FE
(1) (2)

AC × T (≥ 35) -0.0208** -0.0178*
(0.009) (0.010)

Cooler × T (≥ 35) -0.00636 -0.00629
(0.005) (0.005)

Income Per Capita Yes Yes
Income × Temperature Bins No Yes
Precipitation Terciles Yes Yes
Humidity Bins Yes Yes
District FE Yes Yes
Year FE Yes Yes
Quadratic Trend × Region Yes Yes

R2 0.05 0.06
Observations 2753 2753

Notes: The dependent variable is the natural logarithm
of mortality rate. Estimated period is 2014-2019. Ref-
erence category for temperature is bin 15-20 ° C. Refer-
ence category for humidity is bin 9-12 g/kg. (1)-(3) clus-
tered standard errors at district level in parentheses. *
p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are
weighted by the square root of district population.
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