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This paper estimates the impact of temperatures on emergency department visits us-
ing daily data from the universe of public hospitals in Mexico from 2008 to 2022. We
find that cold temperatures decrease visits by up to 8.9% on the same day, while warm
temperatures increase visits by as much as 3.6%. Using distributed lag models, we
then show that cold temperatures can reduce visits for the next 30 days by up to 16.3%.
For warm temperatures, contemporaneous and cumulative effects are similar (lim-
ited harvesting). These findings suggest that, unlike mortality, temperatures affect the
demand for emergency services linearly. Leveraging the granularity of our dataset,
we also document significant heterogeneities (e.g., higher sensitivity for children and
teenagers) and relevant mechanisms like ecosystem dynamics and behavioral changes.
Finally, we project that temperature-driven annual emergency department visits will
increase by 0.24% by mid-century, resulting in an estimated increase of 92 million USD
in annual medical expenditures in Mexico.
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1. Introduction

In the context of global warming, the impact of adverse temperature conditions on health

emerges as a significant public health concern worldwide. While extensive research has

documented temperature’s effect on mortality, its influence on subfatal health conditions

remains largely overlooked. A primary reason for this gap in the literature is the lack

of comprehensive morbidity data, hindering large-scale assessments and leading to an

incomplete estimate of the health costs associated with temperature changes (White, 2017;

Gould et al., 2024). This issue is especially pronounced in developing countries, where

climate change is likely to have more severe effects due to warmer climates and lower

adaptive capacities (Davis et al., 2021).

This paper estimates the relationship between temperature and morbidity in Mexico us-

ing daily case-level data on emergency department (ED) visits from all public hospitals

between 2008 and 2022. To assess the causal effect of temperature on ED services, we ex-

ploit exogenous daily variations on average temperatures within the same municipality,

month, and year, while controlling for correlated weather variables, such as precipitation

and relative humidity, as well as day-of-the-week seasonal factors. Using distributed lag

models (Deschenes and Moretti, 2009), we provide evidence of the effects of temperature

changes on same-day and cumulative demand for ED services over the following thirty

days.

Our results show that an additional day with a daily average temperature above 30 °C

increases contemporaneous ED visits by 3.6%. In contrast, an additional day below 10 °C

reduces visits by 8.9%. Considering the cumulative effect over the next thirty days, the

increase from heat slightly decreases to 2.5% (harvesting), while the reductions from cold

almost double to 16.3%. These findings align with previous research in California, which

indicates a linear relationship between the temperature gradient and ED visits (White,

2017; Gould et al., 2024). Notably, observing the same effect in Mexico and California

enhances the external validity of our results, suggesting that this relationship holds in

different contexts.
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Finding a linear relationship between ED visits and temperature changes is crucial be-

cause it contrasts with the U-shaped relationship observed for mortality (Cohen and Deche-

zleprêtre, 2022; Deschenes and Moretti, 2009; Deschênes and Greenstone, 2011). Using

data from death certificates during the same period, we confirm this U-shaped relation-

ship in Mexico. This difference in functional forms implies significant heterogeneities in

the potential effects of climate change. Non-linear and concave relationships make the

consequences of climate change context-dependent, influenced by current climatic and

social conditions. In contrast, when the relationship is linear, climate change’s shift to-

ward warmer temperatures will consistently increase demand for ED services across the

entire temperature distribution.

Our analysis by disease category shows that cumulative cold temperatures increase ad-

missions for respiratory and infectious diseases over time. In contrast, hot temperatures

raise admissions for endocrine, genitourinary, and infectious-parasitic diseases, as well

as for external causes. The coefficients across disease categories align in sign and signifi-

cance with estimates from California (White, 2017). However, variations in the prevalence

of certain conditions lead to differences in the average effect. Specifically, the cumulative

increase in cold-related visits in California primarily originates from respiratory diseases

and other communicable conditions. While respiratory diseases respond similarly in our

case, their contribution to the overall rise in visits during cold spells cannot offset declines

in other categories, like vector-borne diseases and encounters with venomous animals and

plants, leading to a net reduction in cold-related admissions. These differences emphasize

the importance of local disease prevalence and health profiles in shaping temperature-

morbidity outcomes.

Having case-level data also allows us to aggregate ED visits across different demograph-

ics. First, we examine age differences. Younger populations respond more strongly to hot

and cold temperatures, showing significant immediate effects in children and adolescents.

Variations in the demand for ED services and their interaction with temperatures explain

the differences in effects between age groups. For instance, people under 40 primarily

visit the emergency department for respiratory, infectious-parasitic, and obstetric issues.
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In contrast, older cohorts typically seek care for circulatory and endocrine conditions,

such as diabetes and hypertension, which are less sensitive to temperature variations. We

also demonstrate that heat affects children differently due to the dynamics of respiratory

diseases, which account for the majority of pediatric visits. Second, we identify slight vari-

ations in responses between men and women, attributed to differences in their demand

for health services; for instance, the most common reasons for ED visits are obstetric and

respiratory consultations for women and men, respectively.

We then propose a classification of mechanisms linking temperature to emergency room

visits: (1) illness incidence, (2) ecosystem dynamics, and (3) behavioral changes. For each

mechanism, we provide examples of related illnesses. For the illness incidence channel,

we highlight that cold temperatures decrease admissions for heat-related shocks, false la-

bor, and dissociative disorders, while hot temperatures increase them. Ecosystem dynam-

ics show that cold temperatures reduce cases of dengue, foodborne intoxications, and vis-

its due to contact with poisonous animals and plants, whereas hot temperatures increase

these cases. The behavioral channel includes two mechanisms. First, patients may post-

pone visits during cold weather. Although we cannot directly test this mechanism with

our data, we use heterogeneous responses from related but less acute conditions as sug-

gestive evidence. For instance, we observe a greater reduction in ED visits for headaches

compared to migraines and epilepsy, as well as for urinary infections compared to chronic

kidney disease. This pattern aligns with White (2017) which shows a greater reduction

in ED visits during cold weather for more deferrable conditions. Finally, temperature

changes can influence behavior beyond deferral, leading to riskier activities. For example,

admissions for alcohol-related disorders decrease in cold weather and increase in heat.

Finally, we estimate future levels of temperature-induced ED visits by mid-century using

our results along with climate projections. Ceteris paribus, our estimates indicate a steady

annual increase in admissions, starting with 193,000 additional visits between 2031 and

2040 and rising to over 300,000 visits between 2051 and 2060. This is equivalent to 0.24%-

increase in ED visits with respect to a no-climate change scenario. A rough calculation

then suggests that temperature changes could raise public health spending by approxi-
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mately 92 million USD per year by mid-century. These rising costs result from increased

cold- and heat-related admissions. Initially, the decline in cold-related hospitalizations

dominates, but heat-related admissions become more prominent over time.

Related literature. This paper makes several contributions. First, our findings contribute

to the literature on temperature and health, as a key channel through which climate

change impacts socio-economic factors (Carleton and Hsiang, 2016). We focus on the rela-

tionship between morbidity and temperature, a topic that has received considerably less

attention than the temperature-mortality gradient. Recent studies show that extreme tem-

peratures can lead to subfatal, yet significant, health consequences (White, 2017; Karlsson

and Ziebarth, 2018; Agarwal et al., 2021; Gould et al., 2024). We provide new evidence

on this relationship using granular temporal and spatial data from all public hospitals in

Mexico. This rich data set allows us to explore all-cause and cause-specific responses to

temperature across all age groups. Moreover, while most existing studies have a limited

geographic scope (White, 2017; Gould et al., 2024) or are not representative of the entire

population within a country (Agarwal et al., 2021), our study offers a comprehensive na-

tional coverage. A notable exception in the literature is the work of Karlsson and Ziebarth

(2018), which examines the effects of temperature on mortality and hospital admissions in

Germany. Our study extends this analysis beyond high-income contexts, providing causal

evidence of the effect of temperature on ED visits in this setting. Importantly, the demand

for ED services reflects acute health shocks better than hospital visits, many of which are

scheduled or inevitable (White, 2017). This focus on the ED provides a clearer picture of

acute health responses to temperature variations.

We are aware of only one other paper that examines how temperatures affect ED visits in

a developing country context. In concurrent work, Aguilar-Gomez et al. (2025) analyzes

the impact of extreme heat on hospital congestion in Mexico. Similar to our findings,

they document a linear relationship between temperature and both ED visits and hospi-

talizations. Their study further demonstrates that increased heat-related ED visits lead

to higher hospital congestion, ultimately raising the mortality risk for admitted patients.

We view our work as complementary to Aguilar-Gomez et al. (2025). While their analysis
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focuses primarily on extreme heat and its implications for hospital congestion and patient

outcomes, we examine the full temperature distribution, revealing broader patterns and

mechanisms that drive the temperature-morbidity relationship.

Second, we contribute to the literature on individuals’ behavioral responses to temper-

ature shocks (White, 2017; Graff Zivin and Neidell, 2014). Our data allows us to iden-

tify when individuals seek treatment, which differs from the timing of the health shock.

Several factors influence the decision to delay or forgo treatment beyond temperature, in-

cluding external factors, disease type, age, and healthcare system (de Bartolome and Vosti,

1995; Jowett et al., 2004; Sahn et al., 2003; Das and Do, 2023). We advance this literature

by identifying the mechanisms behind treatment-seeking behavior within a public health-

care system like Mexico,1 and comparing it with a predominantly private system like the

United States (White, 2017).

Third, we highlight the differences in the impact of temperature on mortality and ED

visits. The rich administrative data available in Mexico provide a unique opportunity to

study the effects of temperature within the same population and period. Using consistent

exposure and econometric models, we present evidence that temperature affects mortal-

ity and the demand for ED services in significantly different ways in line with previous

studies for US and Germany (Gould et al., 2024; Karlsson and Ziebarth, 2018).

Finally, we contribute to the literature on the relationship between natural ecosystems and

human health. For example, Frank and Sudarshan (2023) recently found that vulture ex-

tinction in India increased human mortality due to declining sanitation. Dasgupta (2018)

shows that warmer temperatures will facilitate the spread of malaria in currently disease-

free regions. In this study, we show that a significant share of heat-driven ED visits in

Mexico stems from contact with venomous insects and animals, as well as vector-borne

diseases like dengue and other parasitic and infectious diseases, which are more prevalent

at higher temperatures.

This insight is crucial for tropical and semi-tropical climates, where sustained high ambi-

1 For more information on the Mexican health case system, see Appendix A.1.
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ent temperatures promote vector-borne and envenomation-related health issues (Harvell

et al., 2002). Higher temperatures accelerate mosquito breeding cycles, increasing the

transmission of diseases like dengue (Mordecai et al., 2013). Increased temperatures also

elevate the activity of venomous arthropods and animals (Dell et al., 2011). As ectothermic

organisms thrive in warmer conditions, their interactions with humans increase (Harvell

et al., 2002). Furthermore, elevated temperatures enhance pathogen replication in both

vectors and hosts, raising the risk and severity of parasitic and infectious diseases (Patz

et al., 2005).

2. Data

Weather. We use hourly weather data from the ERA5 reanalysis dataset, an atmospheric

reanalysis product from the European Center for Medium-Range Weather Forecasts. We

extract average air temperature and precipitation for each day between January 2008 and

December 2021. Next, we calculate daily population-weighted averages of all weather

variables in each municipality using the gridded population of the world dataset curated

by NASA’s Socioeconomic Data and Applications Center (SEDAC).

Emergency department visits. We obtain data on daily visits from the health informa-

tion system of the Mexican health ministry. The dataset includes all ED visits in Mexican

public hospitals from 2008 to 2022.2 Each observation records a single admission and

includes patient characteristics (age, sex, residence, insurance), event characteristics (out-

come, ICD-10 code, reason), and geographical identifiers (hospital ID, municipality, state).

Using these data, we construct a panel of daily ED admissions per 100,000 persons for each

municipality with at least one hospital. We use population data from the Mexican census

to estimate admission rates. We classify visits by gender (men and women), age (six age

2 Figure A.2 shows that public hospitals in Mexico are approximately 35% of the total, a higher figure
than in the United States but lower than in the European Union. Although there are approximately 2.5
private hospitals for every public hospital, most private hospitals have fewer than 20 beds and function
mainly as outpatient clinics, offering primary care and some specialized diagnostic and treatment services
(Organization et al., 2017). In fact, only approximately 14% of people affiliated with a public healthcare
institution choose to receive care in private hospitals (Juan López et al., 2015). Looking at the number of
public hospitals per million people, Mexico has more than two times the number of hospitals than the
United States and a higher number than most EU states, except France.
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groups), and ICD-10 codes (e.g., respiratory, cardiovascular, obstetric).

Mortality. We collect mortality data from the Mexican National Institute of Geography

and Statistics (INEGI). The dataset includes municipality and date of death information

for all people who died in the country between 1998 and 2021. Similar to emergency room

admissions, we construct a panel of daily municipal mortality rates per 100,000 people.

Descriptive statistics. Figure 1 presents the time series of ED admissions and mortality

rates per 100,000 persons, normalized to January 2008. The time series exhibits clear sea-

sonality, with reduced admissions in November and December. We identify two breaks

in the time series. The first break occurred in 2018 when the flagship healthcare program,

Seguro Popular, was replaced by a new scheme. The second break took place in 2020 due

to the COVID pandemic.3

Figure 1: Time series of emergency room visits and mortality rates

Notes: These figures present the time series of the rate of emergency room admissions and mortality per 100,000 persons. We standard-
ize the value of both time series so that it is equal to zero at the start of our sample in January 2008.

Understanding why people seek treatment is crucial, as it influences the relationship be-

tween temperature and ED visits. Due to the limited granular information on ED usage

3 In 2018, the Mexican government implemented significant changes to the country’s health system, re-
placing the Seguro Popular with the Instituto de Salud para el Bienestar (INSABI). While the government
introduced INSABI to expand healthcare access and eliminate financial barriers, its implementation faced
significant challenges, particularly during the COVID-19 pandemic. The transition period saw interrup-
tions in healthcare services, which may have temporarily worsened health coverage.
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by country, we contextualize our Mexican data by comparing them with data reported by

White (2017) on outpatient ED visits in California. However, we need to clarify a couple of

differences between the two data sets. First, while White (2017) identifies only outpatient

ED visits, we can identify inpatient visits. This distinction is significant because inpatient

visits respond more closely to temperature shocks. Second, White (2017) reports aggre-

gate descriptives using Clinical Classifications Software (CCS) codes instead of ICD-10

chapter codes.

Although the two classifications are similar, they serve different purposes. The ICD-10 is

a comprehensive diagnostic tool containing over 70,000 codes for specific conditions. In

contrast, the CCS aggregates these codes into approximately 285 broader categories, facil-

itating the analysis of large health data sets. ICD-10 provides detailed precision, whereas

CCS offers simplified, high-level summaries. One limitation of our case-level data is that

it reports ICD-10 classifications only up to four digits. This restriction hampers our ability

to aggregate into CCS group categories, as some require more detailed classifications of up

to six digits. However, both classifications share the most important chapters. Therefore,

we choose to compare the ICD-10 and CCS chapters directly.

Table 1 presents descriptive statistics comparing admissions in Mexico and California.4

Distinct patterns emerge when comparing the two datasets. First, the visit rate in Califor-

nia (77.09) exceeds that of Mexico (53.2). This difference arises mainly from California’s

older population, which has an average age nearly 10 years higher than that of Mexico.

Second, primary utilization patterns differ significantly. In Mexico, a larger proportion

of visits pertains to pregnancy and the perinatal period (10.81%) as well as infectious

and parasitic diseases (5.93%), common in warmer climates. In contrast, California has a

higher prevalence of injuries, circulatory diseases, nervous conditions, and mental health

issues, often linked to an older population. Despite these differences, interesting simi-

larities exist, including a comparable share of admissions due to respiratory, digestive,

genitourinary, and endocrine conditions. This is striking given the diverse populations,

healthcare infrastructures, and risk factors.

4 Some ICD-10 chapters lack corresponding CCS chapters and vice versa (e.g., congenital for CCS and
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Table 1: Emergency department visits in Mexico and California

Chapter Share of visits (%) ED visits per 100k Total visits (Million)

California Mexico California Mexico California Mexico

Total Visits 100 100 77.09 53.2 94.23 130.30
Injuries 20.54 14.66 15.84 8.1 19.36 19.11
Respiratory 12.82 13.99 9.88 9.5 12.08 18.22
Other - 23.66 - 10.9 - 30.84
Digestive 7.83 7.19 6.04 4.1 7.38 9.37
Pregnancy 2.7 10.81 2.08 4.7 2.54 14.09
Nervous System 8.84 1.02 6.82 0.6 8.33 1.33
Circulatory 8.52 2.85 6.57 1.8 8.03 3.71
Genitourinary 6.04 5.53 4.66 3.2 5.69 7.21
Skin-Musculoskeletal 8.76 3.84 6.7 2.5 8.9 5.00
Mental Illness 4.23 1.55 3.26 0.7 3.99 2.02
Infections and Parasitic 2.78 5.93 2.1 4.1 2.62 7.73
Endocrine 2.16 2.76 1.6 1.6 2.03 3.59
Neoplasm 0.58 0.66 0.4 0.3 0.55 0.86
Blood 0.5 0.4 0.4 0.2 0.47 0.53
Congenital 0.05 - 0.04 - 0.04 -
Perinatal 0.24 - 0.18 - 0.23 -
Eye-Ear - 1.31 - 0.5 0.00 1.70
Residual visits 13.4 - - - 12.63 -

Notes: Direct comparison of CCS and ICD-10 Codes, sorted by share of visits. Data from California comes from
Table 1 in White (2017) and spans between 2005 and 2015. Data for Mexico comes from the health information
system of the Mexican health ministry and span all ED visits between 2008 and 2022.

3. Empirical strategy

Our research design leverages the plausibly exogenous temporal and spatial variation in

daily temperature to identify its causal effect on ED visits (Deschenes and Moretti, 2009).

Due to numerous zero values in the dependent variable, we implement a Poisson Pseudo-

Maximum Likelihood (PPML) estimation with high-dimensional fixed effects to identify

the effects (Wooldridge, 1999).5 Equation 1 presents our main specification.

Yidmy = exp

[
30

∑
j=0

6

∑
b=0

λb,j × Dt−j
b,idmy +

30

∑
j=0

Xt−j
idmyγj + δimy + δiw

]
+ εidmy (1)

eye/ear for ICD-10).
5 It is unlikely that in our setting the Ordinary Least Squares (OLS) assumptions of homoskedasticity and

normally distributed errors hold (Chen and Roth, 2023).
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In this empirical model, Yidmy represents the number of ED admissions per 100,000 for mu-

nicipality i on day d of month m and year y. We model temperature non-linearly across six

intervals, ranging from ≤10 to >30 °C, using 20 to 25°C as the reference interval. Db,idmy is

an indicator variable denoting whether a day’s average temperature falls within interval

b. δimy represents fixed effects for the municipality-month-year of observation. This ap-

proach controls for potential confounders such as systematic differences across municipal-

ities, seasonality, and other unobserved factors that vary within municipalities during the

same month. δiw includes fixed effects for the municipality and weekday of observation.

Xidmy is a matrix of additional controls, including a quadratic function of precipitation

and relative humidity. ϵidmy is an idiosyncratic error term, assumed to be uncorrelated

with Db,idmy. We weigh our regression by population and cluster standard errors at the

municipality level to address correlation among unobservables and autocorrelation over

time.

Since displacement effects can last several days (Deschenes and Moretti, 2009), we specify

Equation 1 as a distributed lag model that considers the cumulative impact of temperature

changes for up to 30 days after the shock. We include thirty lagged temperature intervals

and weather controls to obtain a single coefficient for the effect of temperatures j days after

the change. Following previous research (Deschenes and Moretti, 2009), we combine λb,j

linearly to derive a long-term aggregate effect J periods after the shock λb,J . For instance,

J ∈ (3, 7, 30) provides estimates for the cumulative effect over the next three, seven, and

thirty days, effectively accounting for the displacement and anticipation of admissions.

Accounting for displacement effects is crucial in our setting. Prior research by White

(2017) finds that in the US, cold temperatures initially reduce individuals’ willingness

to seek treatment, but this trend reverses after 30 days due to the cumulative impact of

respiratory conditions. Additionally, hot temperatures may shift the timing of ED visits.

Specifically, vulnerable individuals who would have sought treatment in the near future

may anticipate their visit due to acute heat stress (harvesting effect). Therefore, our em-

pirical model allows us to compare health outcome changes that occur immediately after

exposure (contemporaneous effect) to those that persist over a more extended period (cu-
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mulative effect).

4. Results

Table 2 reports the estimated effects. Our estimates reveal a linear relationship between

average daily temperature and emergency department visits. Cold temperatures reduce

visits in both contemporaneous and cumulative models. Specifically, an additional day

with temperatures at or below 10 °C decreases ED visits by 8.9% on the event day. This ef-

fect intensifies to a 16.3% reduction when accounting for the following 30 days. Negative

effects also occur for days with temperatures between 10 and 15 °C, as well as between 15

and 20 °C. Conversely, temperatures at or above 25 °C increase visits. An additional day

between 25 and 30 °C results in a 2.4% increase on the event day, growing to a 4.5% cumu-

lative increase over the 30-day period. For the warmest interval (> 30 °C), visits increase

by 3.6% on the event day. However, this effect diminishes to 2.5% when examining the

cumulative impact over 30 days (harvesting).

Table 2: The effect of daily temperatures on emergency room visits

Emergency room visits per 100,000 people

Contemporaneous Cumulative (30 days)

≤ 10 °C -0.089*** -0.163***
(0.006) (0.023)

10 to 15 °C -0.052*** -0.111***
(0.003) (0.017)

15 to 20 °C -0.026*** -0.051***
(0.002) (0.008)

25 to 30 °C 0.024*** 0.045***
(0.002) (0.009)

> 30 °C 0.037*** 0.025**
(0.003) (0.012)

Notes: This table presents the coefficients of a Poisson maximum likelihood estimator distributed lag model with 30 lags. The coeffi-
cients estimate the effects of daily temperature intervals, using a reference category of (20-25] °C. The dependent variable is emergency
room visits per 100,000 people. The table presents results for two aggregation levels: contemporaneous model indicates the effect of
temperatures on the a same day, while distributed lag model (thirty days) represents the linear combination of thirty temperature lags.
Weather controls include linear and squared precipitation, relative humidity, atmospheric pressure, and the leaf area index. The
econometric design incorporates municipality-by-year-by-month and municipality-by-weekday fixed effects. N.Obs: 2,659,917. The
average ER admission rate is 53.173 per 100,000 people. Standard errors are clustered at the municipality level. Significance codes:
∗∗∗ < 0.01,∗∗ < 0.05,∗ < 0.1.

Our coefficients partially align with previous estimates from California (White, 2017; Gould

et al., 2024). For cumulative impacts, we find a stable and significant effect for the hottest
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temperature bin, consistent with both White (2017) and Gould et al. (2024). In contrast,

our results indicate that cold temperatures consistently reduce admissions. This finding

aligns with Gould et al. (2024) but differs from White (2017). The latter study suggests

that the effect of cold temperatures shifts from negative in the short term to positive when

aggregating all lag contributions. These dynamics of respiratory conditions align with

epidemiological literature, as cold weather facilitates transmission and leads to higher

incidence days or weeks after the cold spell.

Figure 2 illustrates the cumulative effects over time. The left panel displays the coef-

ficient for each value of J ∈ (0, ..., 30). The right panel presents estimates for J = 0 and

J = 30 across the temperature distribution. Cold temperatures significantly reduce admis-

sions immediately after exposure, followed by slight increases in the subsequent weeks.

Conversely, hot temperatures substantially increase admissions during the first ten days

post-exposure, with the effect gradually diminishing over the next 20 days.

Figure 2: The dynamic effects of daily temperature on emergency room visits

Notes: This figure presents the point estimates and 95% confidence intervals of a Poisson MLE distributed lag model aggregated across
30 different time windows. In panel a), we present the cumulative estimates over t + k with t + k ∈ (1, ...30). Each point refers to the
linear combination of t + k temperature lags on mortality at time t. In panel b), we focus only on t + k = 0 and t + k = 30 to highlight
contemporaneous and mid-term differences in the coefficients. The coefficients refer to indicators for daily temperature intervals with
reference category (20-25] °C. Standard errors are clustered at the municipality level.

The baseline results suggest a linear effect of temperatures on ED visits. This effect con-
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trasts with the dynamics between temperature variations and mortality Cohen and Deche-

zleprêtre (2022). Comparing our estimates with mortality underscores these differences

for the same period and population. While ED visits exhibit a linear pattern, mortality

has a U-shaped relationship with temperature (Figure A.3). These differences likely result

from various mechanisms, including the types of illnesses affected, behavioral responses,

and the age groups most at risk (Gould et al., 2024).

4.1. Heterogeneity by ICD-10 chapter

Next, we use patient diagnosis information to assess how temperature effects vary across

ICD-10 chapters. For each chapter, we estimate Equation 1 separately and summarize the

results in Table 3.6

Table 3: The effect of daily temperatures on emergency room visits by disease category

Emergency room visits per 100,000 people

Blood and Immune Circulatory Digestive Endoc./Metabolic External Causes

Cont. Cumul. Cont. Cumul. Cont. Cumul. Cont. Cumul. Cont. Cumul.

≤10°C -0.0852*** -0.2302** -0.0574*** -0.0196 -0.0689*** -0.2456*** -0.1443*** -0.1686*** -0.1378*** -0.3338***

(0.0268) (0.1126) (0.0091) (0.0378) (0.0085) (0.0311) (0.0116) (0.0509) (0.0089) (0.0328)

10–15°C -0.0567*** -0.1625*** -0.0127** -0.0102 -0.0332*** -0.1699*** -0.0871*** -0.1328*** -0.0813*** -0.2180***

(0.0121) (0.0481) (0.0052) (0.0205) (0.0042) (0.0215) (0.0071) (0.0332) (0.0051) (0.0246)

15–20°C -0.0334*** -0.1470*** -0.0046 -0.0102 -0.0161*** -0.0613*** -0.0446*** -0.0651*** -0.0406*** -0.1157***

(0.0095) (0.0330) (0.0036) (0.0139) (0.0028) (0.0120) (0.0045) (0.0179) (0.0033) (0.0120)

20–25°C 0.0094 0.0952** -0.0076* -0.0102 0.0015 0.0347*** 0.0426*** 0.0566*** 0.0425*** 0.0963***

(0.0110) (0.0419) (0.0043) (0.0184) (0.0030) (0.0120) (0.0046) (0.0187) (0.0031) (0.0111)

>30°C 0.0160 0.2079*** -0.0335*** -0.0652*** -0.0006 0.0403** 0.1020*** 0.1992*** 0.0563*** 0.1216***

(0.0251) (0.0664) (0.0090) (0.0239) (0.0054) (0.0182) (0.0106) (0.0321) (0.0061) (0.0191)

Observations 1,983,791 2,523,536 2,566,908 2,513,261 2,608,349

Mean Outcome 0.02 0.18 0.41 0.16 0.81

Eye and Ear Genitourinary Inf. and Parasitic Mental Neoplasms

Cont. Cumul. Cont. Cumul. Cont. Cumul. Cont. Cumul. Cont. Cumul.

≤10°C -0.0597*** 0.0014 -0.0849*** -0.2703*** -0.1692*** -0.7271*** -0.1397*** -0.2451*** -0.0577*** -0.2484***

Continued on next page

6 See Table A.4 for specific statistics about the main diseases in each ICD-10 chapter and the share of con-
ditions per chapter and disease.
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(0.0118) (0.0572) (0.0103) (0.0385) (0.0090) (0.0468) (0.0169) (0.0623) (0.0176) (0.0600)

10–15°C -0.0190*** 0.0166 -0.0468*** -0.2043*** -0.1001*** -0.4250*** -0.0842*** -0.1417*** -0.0321*** -0.1169***

(0.0072) (0.0242) (0.0046) (0.0237) (0.0055) (0.0211) (0.0080) (0.0306) (0.0106) (0.0410)

15–20°C -0.0046 0.0033 -0.0264*** -0.0977*** -0.0512*** -0.1652*** -0.0439*** -0.0572*** -0.0142* -0.0199

(0.0053) (0.0177) (0.0032) (0.0131) (0.0035) (0.0166) (0.0053) (0.0190) (0.0075) (0.0279)

20–25°C 0.0167*** 0.0641*** 0.0260*** -0.2043*** 0.0500*** 0.0698*** 0.0478*** 0.0619** -0.0028 0.0272

(0.0056) (0.0245) (0.0035) (0.0237) (0.0040) (0.0211) (0.0062) (0.0293) (0.0093) (0.0363)

>30°C 0.0177 0.0971** 0.0475*** 0.2048*** 0.0858*** -0.0734** 0.0887*** 0.0720* -0.0256 -0.0153

(0.0129) (0.0391) (0.0064) (0.0385) (0.0080) (0.0300) (0.0126) (0.0397) (0.0178) (0.0446)

Observations 2,367,496 2,555,135 2,545,679 2,407,824 2,019,983

Mean Outcome 0.09 0.32 0.41 0.07 0.03

Nervous System Obstetric Other Respiratory Skin/Musc.

Cont. Cumul. Cont. Cumul. Cont. Cumul. Cont. Cumul. Cont. Cumul.

≤10°C -0.1233*** -0.1752*** -0.0483*** -0.1074*** -0.0704*** -0.1737*** -0.0737*** 0.1816*** -0.1098*** -0.2567***

(0.0131) (0.0513) (0.0097) (0.0361) (0.0099) (0.0294) (0.0060) (0.0316) (0.0084) (0.0279)

10–15°C -0.0638*** -0.0620*** -0.0323*** -0.0393** -0.0489*** -0.1578*** -0.0357*** 0.1621*** -0.0552*** -0.1805***

(0.0077) (0.0224) (0.0036) (0.0188) (0.0043) (0.0248) (0.0036) (0.0243) (0.0054) (0.0169)

15–20°C -0.0269*** -0.0298* -0.0182*** -0.0393** -0.0247*** -0.0730*** -0.0153*** 0.0841*** -0.0250*** -0.0767***

(0.0050) (0.0178) (0.0028) (0.0144) (0.0026) (0.0248) (0.0028) (0.0145) (0.0035) (0.0110)

20–25°C 0.0172** 0.0404* 0.0197*** 0.0735*** 0.0282*** 0.0797*** 0.0059* -0.1130*** 0.0184*** 0.0810***

(0.0068) (0.0227) (0.0026) (0.0126) (0.0027) (0.0130) (0.0033) (0.0147) (0.0039) (0.0141)

>30°C 0.0015 0.0584 0.0408*** 0.0698** 0.0412*** 0.0656*** 0.0089 -0.3041*** 0.0147** 0.1517***

(0.0129) (0.0387) (0.0057) (0.0289) (0.0066) (0.0210) (0.0060) (0.0262) (0.0073) (0.0270)

Observations 2,375,375 2,540,413 2,607,472 2,562,380 2,509,903

Mean Outcome 0.06 0.47 0.41 0.95 0.25

Notes: This table presents point estimates of the effects of daily temperature deviations on the rate of ED admissions across all ICD-10
chapter codes. We use the standard Poisson maximum likelihood estimation (MLE) distributed lag model to estimate the effect. All
models include year-by-month-by-municipality and weekday-by-municipality fixed effects along with second degree polynomial of
precipitation and relative humidity. Our temperature intervals use the (20-25] °C category as the reference. The table presents results
for two aggregation levels: contemporaneous model indicates effects of temperatures on the same day, while distributed lag model (thirty
days) represents the linear combination of thirty temperature lags. Standard errors cluster at the municipality level. Significance codes:
∗∗∗ < 0.01,∗∗ < 0.05,∗ < 0.1.

Contemporaneous effect. Cold temperatures consistently reduce admissions across var-

ious illnesses, with a 4.83% decrease in obstetric cases and a 16.92% decrease in infectious

and parasitic diseases for the coldest temperature range. Conversely, warmer tempera-

tures increase admissions for specific conditions. For instance, endocrine and metabolic

illnesses show a 4.26% rise in admissions at temperatures between 25°C and 30°C, which

grows to approximately 10.20% at temperatures between 30°C and 45°C. Similarly, exter-

nal causes, including injuries and poisonings, respond positively to warm temperatures.

Other conditions that significantly increase with warm temperatures include genitouri-
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nary, infectious and parasitic, mental, obstetric, and skin-musculoskeletal disorders. In

contrast, blood-immune, digestive, nervous system, respiratory, and eye-ear categories

show no significant effects. Circulatory diseases are the only category with a negative

contemporaneous coefficient under warm conditions.

Cumulative effect of cold. Several health conditions show amplified coefficients in the

distributed lag model. These amplifications across disease categories explain the higher

pooled coefficients in cumulative models compared to contemporaneous models in the

main results. Notably, cumulative coefficients for extreme cold reach 72.7% for infectious

and parasitic diseases and 33.4% for external causes. The results for infectious-parasitic

diseases differ from White (2017), who reports a significant decrease of approximately

35%. However, this effect has a limited overall impact in California due to the low preva-

lence of these diseases, which account for about 3% of visits. In contrast, our cumulative

negative effect significantly influences the overall admission trend in Mexico, where this

category constitutes roughly 6% of visits (Table A.4). Significant reductions in dengue,

foodborne bacterial intoxications, and gastroenteritis-colitis drive this 30-day decline (Ta-

ble 4).7 Other categories, such as genitourinary (27%), neoplasms (25%), and skin and

musculoskeletal (26%), also exhibit statistically significant amplifications.

One exception to the amplification of short-term impacts after thirty days occurs with

respiratory conditions, which exhibit a shift in signs between contemporaneous and cu-

mulative models. While extreme cold initially causes a 7.37% decrease in admissions, the

30-day cumulative effect shows a significant 18.2% increase, highlighting the delayed ad-

verse impacts of cold on respiratory health. This pattern reflects the nature of respiratory

viral infections, where cold weather encourages social gatherings, facilitating transmis-

sion and leading to higher incidence days or weeks after the cold spell (Matsuki et al.,

2023). Interestingly, although the dynamics of respiratory conditions align with estimates

from California (White, 2017), this increase is insufficient to produce an overall rise in

visits during cold spells, as observed in California.

7 This difference highlights another source of heterogeneity between Mexico and California: in our sample,
dengue accounts for 0.2 visits per 100,000 population, whereas California reports fewer than 200 cases
annually in a population of approximately 39 million (CDPH, 2024).
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Cumulative effect of heat. The cumulative effects of warm temperatures often differ

in magnitude and direction from short-term impacts. For endocrine and metabolic dis-

orders, cumulative admissions increase by 19.9% at hot temperatures (30 °C to 45 °C),

nearly doubling the immediate effect. Similar trends occur for genitourinary and skin-

musculoskeletal disorders, with cumulative increases of 20.48% and 15.17%, respectively,

compared to immediate rises of 4.75% and 1.47%. Some conditions, despite no signifi-

cant contemporaneous effects, show positive cumulative impacts after 30 days, including

Blood/Immune (21%), Eye/Ear (10%), Digestive (4%), and Obstetric (3%). For circulatory

diseases, the negative impact intensifies over time, reaching -6.52% in the 30-day cumula-

tive window. Respiratory diseases show a significant cumulative decrease in admissions

at hot temperatures (-30.41%), despite an insignificant immediate effect. This large de-

crease in respiratory disease visits at the highest temperature interval explains the pooled

reduction in the cumulative point estimate compared to the short-term effect (Figure 2).

Additionally, infectious and parasitic diseases exhibit a cumulative decrease of 7.34%, con-

trasting with an 8.56% immediate increase. This pattern indicates a slight decline in the

initial impact over the 30-day period.

4.2. Heterogeneity by age and gender

Once we understand the most affected disease categories, we examine heterogeneous ef-

fects across demographics. Specifically, Figure 3 presents the coefficients for the contem-

poraneous and cumulative effects by age group and gender.

Contemporaneous effect. In response to cold temperatures, admissions decrease across

all age groups. This is in line with the reduction in admissions across all categories iden-

tified in Table 3. Among children aged 0 to 12 years, admissions decrease by 11.33% on

days with average temperatures below 10 °C. Similar reductions occur in other age co-

horts: admissions decrease by 8.35% for ages 12 to 20, 6.46% for ages 20 to 40, 9.24% for

ages 40 to 60, 8.71% for ages 60 to 80, and 7.80% for ages 80 to 130. Gender differences

also emerge in response to cold. At very low temperatures, males experience a larger re-

duction in admissions (10.36%) compared to females (7.58%). Differences in the effects
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Figure 3: Contemporaneous and cumulative effects by age and gender

Notes: This table presents point estimates and 95% confidence intervals of the effects of daily temperature deviations on the rate of ER
admissions across six different age groups and for male and females. We use the standard Poisson maximum likelihood estimation
(MLE) distributed lag model to estimate the effect. Our temperature intervals use the (20-25] °C category as the reference. The table
presents results for two aggregation levels: contemporaneous model indicates effects of temperatures on the same day, while distributed
lag model (thirty days) represents the linear combination of thirty temperature lags. Standard errors cluster at the municipality level.

of cold between male and females arise from variations in their demand for ED services

(Table A.3). For instance, over 15% of admissions for women are due to obstetric consulta-

tions, which report a contemporaneous decrease of 4.3% at cold temperatures. In contrast,

most of the demand for men relates to respiratory conditions, which react more strongly

to cold (7.4%).

In contrast to cold temperatures, hot temperatures consistently increase admissions across

all age groups, especially among younger populations. For children aged 0 to 12 years,
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each additional day with average temperatures between 25 and 30 °C raises admissions

by 3.06%, while days at or above 30 °C result in a 4.80% increase. Similarly, adolescents

aged 12 to 20 years experience increases of 2.83% and 5.11%, respectively. For adults aged

20 to 40 years, admissions rise by 2.55% at warm temperatures and 4.27% at hot tem-

peratures. In contrast, people older than 60 show no significant contemporaneous effect.

This difference in effects between younger and older populations arises from the varied

conditions triggering ED visits. For children and young adults, obstetric conditions, infec-

tions, and respiratory diseases are most common. All three of these ICD-10 chapters show

large increases during hot temperatures. For people older than 59, circulatory conditions,

diabetes, and urinary tract infections are prevalent, but these show mixed coefficients.

Regarding gender differences, at warm temperatures (25-30 °C), males show a 2.77% in-

crease in admissions, rising to 4.43% at hot temperatures (≥ 30 °C), while females exhibit

increases of 2.28% and 3.39%, respectively.

Cumulative effect (30 days). The 30-day cumulative effects suggest that decreased ad-

missions at cold temperatures intensify over time across most age groups. For children

aged 0 to 12 years, the cumulative decrease in the coldest interval reaches 14.23%, up from

an immediate decrease of 11.33%. For adolescents aged 12 to 20 years, the cumulative re-

duction increases to 18.00%. These amplified effects imply that cold temperatures cause

sustained reductions in admissions, primarily due in significant drops in digestive, ex-

ternal causes, infectious-parasitic, and obstetric categories. Regarding gender, both males

and females show significant cumulative decreases in admissions at cold temperatures,

with reductions of 15.01% and 15.07% in the coldest interval, respectively.

Interestingly, the cumulative effects of hot temperatures differ across age groups. For chil-

dren aged 0 to 12 years, cumulative admissions decrease by 11.26% on very hot days (≥ 30

°C), despite an initial increase of 4.80%. Similarly, the cumulative effect of days with av-

erage temperatures between 25 and 30 °C becomes statistically insignificant after 30 days.

This reversal primarily stems from the dynamics of respiratory conditions, which account

for about 30% of the demand for ED services in this age group. The large cumulative

reductions for the youngest cohort explain why the pooled estimate for the cumulative
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effect of hot temperatures does not significantly differ from the contemporaneous impact

(Figure 2). In contrast to children, other age groups exhibit cumulative increases in the

effect of hot temperatures over the 30-day window due to the lower relevance of respira-

tory diseases in these groups. For instance, while over 30% of visits for children under 12

are due to respiratory conditions, this figure drops to less than 2% for adolescents aged 12

and 20. Regarding gender, cumulative effects at hot temperatures diverge: males show no

significant cumulative impact, while females exhibit a cumulative increase of 3.40%.

4.3. Mechanisms

To further advance our understanding of the dynamics linking temperature variations

and ED visits, we propose a classification of the mechanisms that underpin these rela-

tionships. Table 4 summarizes three primary channels: (1) physiological incidence, (2)

ecosystem dynamics, and (3) behavioral responses. For each mechanism, we present il-

lustrative examples based on specific diseases.

Physiological incidence. Physiological incidence highlights the direct effects of extreme

temperatures on the human body (Table 4, Panel A). Columns 1-2 show that hot temper-

atures significantly increase visits for heat-related conditions like heatstroke, consistent

with extensive epidemiological literature (Weinberger et al., 2021; Sun et al., 2021; Hess

et al., 2014).8 Recent studies also indicate that heat exposure during pregnancy induces

physical and psychological stress, elevating systemic cortisol levels, which impacts fe-

tal and placental membranes, increasing the likelihood of premature labor and preterm

birth (Hunter et al., 2023). Consistent with these findings, we document a significant 5%

increase in admissions for false labor following a day above 30 °C, with this effect ampli-

fying to 15% over the 30-day period (Columns 3-4).

Unlike heat shocks and false labor, we observe a statistically significant reduction in vis-

its for circulatory problems, particularly heart failure, during hot weather (Columns 5-6).

This pattern may reflect increased disease severity under extreme heat, leading to height-

8 Prolonged heat exposure disrupts thermoregulation, causing dehydration, electrolyte imbalances, and
overheating.
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ened mortality before hospital admission (Gould et al., 2024). Previous research suggests

that heat-induced cardiovascular outcomes arise from thermo-regulatory demands, which

impose acute stress on the circulatory system (Anderson et al., 2013). This stress can trig-

ger severe complications, preventing some individuals from accessing emergency care in

time.

We also find that higher temperatures exacerbate mental disorders, such as dissociative

and conversion disorders (Columns 7-8). This effect likely arises from hot temperatures

impairing cognitive function and disrupting sleep, which worsens preexisting mental

health conditions (Nori-Sarma et al., 2022; Sun et al., 2021). For the common cold, the

pattern parallels that of the ICD chapter on respiratory conditions: a short-term decrease

at cold temperatures is followed by an increase after 30 days, and the negative impact of

hot days intensifies when we account for displacement.

Ecosystem dynamics. Temperature fluctuations affect health indirectly through changes

in the ecosystem (Table 4, Panel B). These variations influence the activity of vectors and

pathogens, impacting the prevalence of vector-borne and foodborne diseases (Carlton

et al., 2016; Viana and Ignotti, 2013). Our estimates show that colder temperatures de-

crease the spread of vector-borne diseases, like Dengue, as cooler conditions inhibit trans-

mission dynamics (Columns 1-2). In contrast, hot days consistently increase infection rates

from parasites, as shown by our estimates for foodborne intoxications (Columns 3-4) and

infections during pregnancy (Columns 7-8). Moreover, higher temperatures elevate the

incidence of foodborne illnesses, like gastroenteritis (Columns 5-6).

Shifts in temperature also impact the behavior of local fauna, altering the ecosystem’s bal-

ance and influencing human health risks. Columns 9-10 provide evidence of increased

incidences of intoxications caused by venomous animals and plants during hot days.

Warmer temperatures elevate the activity levels of toxic species, such as spiders and

snakes, especially during peak hours (Needleman et al., 2018). Behavioral factors further

exacerbate these risks as individuals are more likely to spend extended periods outdoors

in warm weather, increasing the likelihood of encounters and bites.
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Behavioral responses. Beyond incidence and ecosystem dynamics, temperature influ-

ences human activity patterns and healthcare-seeking behavior (Table 4, Panel C).

Individuals may change their health-seeking behavior in response to ambient tempera-

tures. Our findings indicate a significant reduction in visits for less severe conditions

compared to more severe conditions within the same ICD categories during cold periods.

For instance, cold temperatures result in a greater decrease in admissions for headaches

(Columns 1-2) compared to epilepsy (Columns 3-4), and in admissions for other urinary

system diseases (Columns 5-6) relative to Chronic Kidney Disease (CKD, Columns 7-8).9

This pattern suggests that individuals with non-urgent needs may postpone or avoid ED

visits during cold weather, reflecting the discretionary nature of healthcare utilization un-

der adverse climatic conditions (White, 2017).

Moreover, warmer temperatures promote outdoor recreation, social gatherings, and al-

cohol consumption. These factors, along with heat-related physiological stress, increase

admissions. For instance, hot days significantly amplify admissions for mental disorders

linked to alcohol consumption (Columns 9-10). This effect likely arises from the inter-

action between high temperatures and behavioral responses, such as increased alcohol

intake as a coping mechanism—e.g., Cohen and Gonzalez (2024) find that alcohol con-

sumption is positively associated with outdoor temperatures. Elevated temperatures also

enhance the physiological and psychological effects of alcohol, raising the likelihood of

acute episodes that require emergency care. Additionally, we find that hot days exacer-

bate other mental health disorders, indicating that heat stress may worsen mood disorders

and cognitive impairments, compounding the effects of alcohol on mental health.

Finally, note that these mechanisms often overlap and interact. On particularly hot days,

physiological stress may coincide with outdoor activities and increased exposure to insect-

borne pathogens, compounding health risks and increasing emergency room demand.

Conversely, cold temperatures may reduce mobility, temporarily suppressing the spread

of certain illnesses while amplifying others, such as respiratory infections, over time.

9 The increase in CKD admissions during cold temperatures is consistent with prior epidemiological find-
ings (Park et al., 2024).
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Table 4: Mechanisms of the temperature-morbidity relationship

Emergency room visits per 100,000 people

Heat Shock False Labor Heart Failure Dissociative Disorder Common Cold

Cont. Cumul. Cont. Cumul. Cont. Cumul. Cont. Cumul. Cont. Cumul.

Panel A: Incidence

≤10 °C -0.193*** -0.424*** -0.064** -0.083 -0.144*** 0.257* -0.228*** -0.393*** -0.020** 0.357***
(0.029) (0.089) (0.028) (0.099) (0.030) (0.147) (0.033) (0.096) (0.009) (0.052)

10-15 °C -0.135*** -0.310*** -0.043*** -0.004 -0.089*** -0.041 -0.150*** -0.213*** -0.000 0.308***
(0.016) (0.049) (0.008) (0.047) (0.018) (0.058) (0.019) (0.061) (0.006) (0.033)

15-20 °C -0.078*** -0.228*** -0.025*** 0.009 -0.048*** 0.011 -0.086*** -0.089* 0.001 0.170***
(0.011) (0.034) (0.006) (0.038) (0.013) (0.048) (0.014) (0.046) (0.005) (0.023)

25-30 °C 0.133*** 0.206*** 0.027*** 0.090*** -0.015 -0.010 0.071*** 0.054 -0.011 -0.221***
(0.013) (0.039) (0.006) (0.028) (0.019) (0.051) (0.015) (0.054) (0.006) (0.027)

>30 °C 0.406*** 0.713*** 0.050*** 0.151*** -0.115*** -0.157 0.146*** 0.081 -0.039*** -0.533***
(0.025) (0.085) (0.009) (0.054) (0.033) (0.098) (0.030) (0.104) (0.012) (0.051)

Observations 1,730,726 1,493,488 1,221,414 1,289,869 2,273,776
Mean Outcome 0.163 0.675 0.068 0.099 1.663

Dengue Foodborne Intox. Gastroenteritis Infect. Pregnancy Animals and Plants

Cont. Cumul. Cont. Cumul. Cont. Cumul. Cont. Cumul. Cont. Cumul.

Panel B: Ecosystem dynamics

≤10 °C -0.519*** -2.399** -0.119*** -0.365*** -0.175*** -0.787*** -0.088*** -0.171*** -0.643*** -1.319***
(0.113) (0.986) (0.029) (0.136) (0.010) (0.052) (0.016) (0.056) (0.028) (0.097)

10-15 °C -0.257*** -1.495*** -0.055*** -0.131** -0.103*** -0.439*** -0.051*** -0.132*** -0.338*** -0.847***
(0.058) (0.354) (0.017) (0.059) (0.006) (0.023) (0.008) (0.034) (0.013) (0.050)

15-20 °C -0.047** -0.704*** -0.042*** -0.058 -0.050*** -0.143*** -0.025*** -0.051** -0.144*** -0.400***
(0.017) (0.153) (0.013) (0.046) (0.004) (0.017) (0.006) (0.022) (0.009) (0.019)

25-30 °C 0.070*** 0.530*** 0.043*** 0.001 0.056*** 0.017 0.031*** 0.170*** 0.106*** 0.358***
(0.018) (0.081) (0.013) (0.049) (0.004) (0.022) (0.006) (0.024) (0.008) (0.029)

>30 °C -0.002 -0.476 0.078** 0.034 0.105*** -0.144*** 0.036*** 0.228*** 0.158*** 0.327***
(0.066) (0.575) (0.036) (0.101) (0.009) (0.035) (0.011) (0.045) (0.019) (0.057)

Observations 444,698 1,500,532 2,405,195 1,837,747 1,976,594
Mean Outcome 0.172 0.133 2.781 0.625 1.194

Headache Epilepsy Other Urinary Inf. CKD Alcohol Disorders

Cont. Cumul. Cont. Cumul. Cont. Cumul. Cont. Cumul. Cont. Cumul.

Panel C: Behavioural changes

≤10 °C -0.214*** -0.258** -0.044** -0.121 -0.108*** -0.407*** 0.0159 0.192** -0.133*** -0.323***
(0.025) (0.081) (0.022) (0.106) (0.013) (0.049) (0.030) 0.081 (0.025) (0.095)

10-15 °C -0.100*** -0.167*** -0.032** -0.021 -0.059*** -0.311*** -0.007 -0.0150 -0.073*** -0.081
(0.016) (0.047) (0.014) (0.039) (0.005) (0.028) (0.015) (0.054) (0.012) (0.058)

15-20 °C -0.042*** -0.050 -0.013 -0.027 -0.028*** -0.146*** -0.0135 0.0001 -0.046*** -0.053
(0.011) (0.034) (0.010) (0.032) (0.004) (0.019) (0.011) (0.039) (0.009) (0.039)

25-30 °C 0.029** 0.052 0.011 0.052 0.0208*** 0.159*** 0.0085 -0.088* 0.061*** 0.085*
(0.014) (0.044) (0.012) (0.042) (0.005) (0.017) (0.014) (0.053) (0.013) (0.047)

>30 °C -0.002 0.183** 0.011 0.026 0.041 *** 0.218*** -0.0010 -0.0002 0.107*** 0.043
(0.032) (0.079) (0.024) (0.079) (0.010) (0.030) (0.027) (0.10) (0.031) (0.093)

Observations 1,394,576 1,804,754 2,451,373 1,280,549 1,855,700
Mean Outcome 0.161 0.160 0.154 0.013 0.187

Municipality-Month-Year ✓ ✓ ✓ ✓ ✓
Municipality-Weekday ✓ ✓ ✓ ✓ ✓

Notes: This table presents point estimates of the effects of daily temperature deviations on the rate of ER admissions across all ICD-10 chapter codes. We use the standard
Poisson maximum likelihood estimation (MLE) distributed lag model to estimate the effect. Our temperature intervals use the (20-25] °C category as the reference. The
table presents results for two aggregation levels: contemporaneous model indicates effects of temperatures on the same day, while distributed lag model (thirty days) represents
the linear combination of thirty temperature lags. Standard errors cluster at the municipality level. Significance codes: ∗∗∗ < 0.01,∗∗ < 0.05,∗ < 0.1.
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5. Mid-century projections

To estimate the impacts of climate change on ER visits, we utilize climate projections from

the CMIP6 framework, incorporating data from five Global Climate Models (GCMs) to

address uncertainty (see Appendix A.4). We analyze shifts in daily temperature distribu-

tions between a historical baseline (1991–2010) and future decades (2031–2060) to quan-

tify changes in the frequency of specific daily temperature ranges across these periods.10

This method evaluates the impact of temperature changes on health outcomes using age-

specific semi-elasticities of hospital admissions and considers cumulative lagged effects

over 30 days.

We convert relative changes in admissions due to climate-induced temperature shifts into

absolute changes by incorporating age-group-specific population growth assumptions

based on SSP2 demographic scenarios (Falchetta et al., 2024). Projections of Mexico’s ag-

ing population allow for the detailed analysis of how changing climatic conditions affect

different age groups. Finally, we estimate the economic impact of these changes using offi-

cial 2024 medical care cost data for Mexico, which includes admission and hospitalization

costs.11 We calculate projected public health expenditures by averaging across GCMs and

assuming constant baseline hospitalization rates relative to admissions over time.

The simulation exercise reveals a clear upward trend in public healthcare expenditures

and admissions over the decades. By 2031–2040, annual public healthcare expenditure is

projected to reach approximately 57.1 million USD, resulting in an increase of 193,000 ad-

missions. In the following decade, 2041–2050, expenditures will rise significantly to 71.4

million USD annually, driven by an additional 241,000 admissions. By 2051–2060, expen-

ditures are expected to escalate further to 91.9 million USD per year, with an anticipated

increase of 311,000 admissions, corresponding to a 0.24% increase in ED admissions.12

10 Temperature changes are aggregated at the municipality level using population-weighted averages.
11 We exploit data from official government estimates from medical care unit costs in Mexico for the year

2024 by the FIMSS (2023). This data provides an average cost per admission (ca) of 207 USD and an
average cost of admissions leading to hospitalizations (ch) of 691 USD.

12 To contextualize our estimates, Gould et al. (2024) projects a 0.46%-increase in ED admissions in California
by mid-century.
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Figure 4: Projections of temperature-related ED visits

Notes: The left panel presents the annual change in public ER admission costs by age group, by decade. Labels at the bottom of the
bars show the change in admission cases (in thousands). The right panel presents the annual change in public ER admission costs and
admission cases, due to changes in hot and cold temperatures, by decade and for all ages. Scatter points represent the GCM mean
values while segments report the minimum and maximum value across GCMs.

Extreme cold and heat significantly increase hospital admissions across all age groups.

The 20–40 age group experiences the largest rise in cold-related admissions, with an ad-

ditional 58,000 projected for 2031–2040, increasing to 94,000 by 2051–2060. The 40–60 age

group also shows a notable increase, from 27,000 additional admissions in 2031–2040 to

44,000 by 2051–2060. Younger (0–12) and older (80–130) age groups experience lower in-

creases, with 18,000 and 3,000 additional admissions, respectively, in 2031–2040, rising to

22,000 and 8,000 by 2051–2060. Cold-related effects lead to higher expenditures, increas-

ing from $5.2 million in 2031–2040 to $27 million by 2051–2060.

The 20–40 age group experiences the highest increase in heat-related admissions, totaling

an additional 24,000 in 2031–2040, rising to 35,000 by 2051–2060. This finding aligns with

previous literature indicating that temperature increases impose a greater burden on the

middle age distribution (Wilson et al., 2024). The 40–60 age group also shows an increase,

from 9,000 admissions in 2031–2040 to 14,000 by 2051–2060. Younger (0–12) and older

(80–130) groups exhibit smaller increases, from 7,000 and 1,000 in 2031–2040 to 11,000 and

4,000 by 2051–2060, respectively. Expenditures for heat-related admissions rise from $2.1

million in 2031–2040 to $10.4 million by 2051–2060.

Summing the effects of cold and hot extremes, total additional admissions rise from 193,000
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in 2031–2040 to 311,000 by 2051–2060. Cold and hot-related effects significantly increase

admissions. From 2031 to 2040, cold-related admissions dominate. However, hot-related

effects become more pronounced in 2041–2060 and 2051–2060. Therefore, healthcare plan-

ning must account for both rising temperatures and the reduced number of cold days, as

the latter significantly contributes to increasing healthcare demand.

6. Conclusion

Our study highlights the importance of examining morbidity outcomes, like ED visits,

to assess the impact of temperature on health. In contrast to mortality, which exhibits a

U-shaped response to extreme cold and hot days, ED admissions show an approximately

linear relationship. This finding corroborates previous research in developed countries

and is the first to document a similar effect in a middle-income context. Moreover, our

data, covering nearly all public hospitals in Mexico, provide a stronger national repre-

sentativeness than many past studies. By examining morbidity and mortality concur-

rently in the same period and location, we demonstrate how temperature extremes affect

health through distinct mechanisms, ultimately providing a more comprehensive view of

climate-related health risks.

Cold temperatures reduce ED visits both immediately and cumulatively, but lead to de-

layed cumulative increases as for respiratory illnesses. This pattern reflects behavioral

changes, like postponing mild treatments, and the incubation periods of certain pathogens.

In contrast, hot temperatures trigger immediate surges for heat-related conditions and in-

juries, followed by partial attenuation over time. These trends may arise from ”harvest-

ing” effects or a displacement of visits. Gender and age patterns reveal that children and

adolescents are more sensitive to heat, while older populations are more vulnerable to

cold. Disease-specific results show that our findings stem from direct physiological re-

sponses, such as heatstroke; behavioral factors, including alcohol-related disorders; and

ecosystem dynamics, like the incidence of vector-borne diseases.

Climate projections indicate that ED usage will increase in the coming decades due to
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extreme temperatures, especially among younger adults during heat waves and older

adults during cold spells. Policymakers must anticipate these trends by expanding ED

capacity and establishing rapid-response protocols. The linear rise in admissions on hot

days and delayed spikes during cold spells pose a serious risk of overburdening public

hospitals, especially in resource-constrained settings (Aguilar-Gomez et al., 2025). The

health and economic consequences of ED overcrowding could be significant. Research

indicates that high occupancy levels (over 90%) correlate with negative patient outcomes,

including treatment delays, elevated mortality rates (20%–30%), extended inpatient stays,

and increased hospital readmission rates (Hoot and Aronsky, 2008).13 A comprehensive

assessment of climate-related health costs must extend beyond mortality estimates and ac-

count for morbidity, healthcare system strain, and indirect economic impacts. Our study

highlights the need for future research to quantify these broader costs, ensuring that cli-

mate policy fully addresses the public health burden of rising temperatures.

13 Numerous factors beyond temperature changes and climate change have been identified as contributing
to the overcrowding in emergency departments, one of the primary reasons being the growing complexity
of cases, potentially linked to an aging population, shortages of staff, delays in laboratory results, and
limitations in physical capacity within hospitals (Trzeciak and Rivers, 2003).
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Appendix A

A.1 The Mexican health care system

Mexico’s healthcare system has a mixed structure, incorporating both public and private

components. This configuration resembles that of other developing countries such as

Brazil, Argentina, Colombia, and South Africa. Public healthcare mainly operates through

the Mexican Social Security Institute (IMSS) and the Institute of Security and Social Ser-

vices for State Workers (ISSSTE), serving formal employees and their families. In addition,

the Seguro Popular program, now succeeded by the Institute of Health for Wellbeing (IN-

SABI), aims to provide healthcare access to the uninsured population. Numerous private

healthcare facilities also exist, offering high-quality services, though these are typically

accessible only for a higher price.

Table A.1 presents the share of people covered by each insurance provider. We estimate

these values using data from the 2020 Mexican Census and display the total numbers for

two categories. Enrollment (self-reported) indicates whether any of the insurance options

provides coverage. Use refers to whether a person has used the services of any of these

institutions in the previous year. For example, an uninsured person can have surgery in

an IMSS hospital.

Table A.1: Mexican healthcare sector enrollment and use

Enrollment in Millions (%) Use in Millions (%)

IMSS 47.0 (37.4%) 39.6 (31.6%)

INSABI or Seguro Popular 36.5 (29.1%) 37.4 (29.8%)

No enrollment - use 28.6 (22.8%) 2.4 ( 1.9%)

ISSSTE and Other 10.3 ( 8.2%) 9.5 ( 7.5%)

Private 3.0 ( 2.4%) 36.1 (28.8%)

Unknown enrollment - use 0.2 ( 0.1%) 0.4 ( 0.3%)

Notes: Data are obtained from the Mexican National Census 2020.

In 2020, about 20% of the Mexican population reported lacking access to healthcare, de-

spite the government theoretical guarantee of universal coverage. These figures contrast
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with the U.S. healthcare system, where private health insurance covered 66% of people

in 2019, public insurance programs like Medicare or Medicaid covered about 25%, and

nearly 30 million people, or 9%, lacked health insurance (Berchick et al., 2019). The unin-

sured segment of the Mexican population can also rely on the public sector paying out-

of-pocket expenses or the private sector, which, while expensive, remains significantly

more affordable than in other North American countries. Importantly, our data set only

includes public hospitals, thus excluding emergency department visits in private institu-

tions.

In addition to differences in the share of insured persons between public and private sys-

tems, Mexico’s healthcare structure has notable distinctions and similarities with other

OECD nations. Unlike the United States, which primarily relies on a privatized system

with employer-based insurance and significant out-of-pocket expenses, Mexico aims for

broader public provision to achieve universal coverage across various population seg-

ments. However, Mexican healthcare faces challenges related to funding and equitable

access. In contrast, European healthcare systems, particularly those with single-payer

models such as the United Kingdom and Sweden, generally ensure universal coverage

funded through general taxation. This approach results in lower out-of-pocket costs and

more equitable access to services.

Figure A.1 uses OECD data to illustrate the burden of health expenditures on govern-

ment finances in selected OECD countries. Unlike many European systems that benefit

from high healthcare spending as a percentage of GDP, Mexico’s healthcare infrastructure

and funding levels are significantly lower, presenting ongoing challenges for the compre-

hensive and equitable care observed in numerous European nations.
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Figure A.1: Health expenditure in government and compulsory schemes

Notes: The figure displays health expenditure in government and compulsory schemes as a percentage of GDP, comparing Mex-
ico with the United States and some European countries. We obtain the data from the OECD database on health and financing
(https://data.oecd.org/healthres/health-spending.htm).
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A.2 Additional descriptives

Figure A.2: Prevalence of public hospitals in selected countries.

Notes: The figure displays the share of public hospitals as a share of the total in a) along with the number of public owned hospitals per
million people in b). We obtain the data from the OECD database on health and financing (https://data.oecd.org/healthres/health-
spending.htm).

Table A.2: Main diseases by sex

ER Type ICD-10 Name # Visits
(Thousands)

Share of
Category

Cumulative
Share

Share of
Total

Female
(65.19%) Encounter for supervision of normal pregnancy (Z34) 12676.21 15.52% 15.52% 10.12%

Infectious gastroenteritis and colitis, unspecified (A09) 2909.33 3.56% 19.09% 2.32%
Acute pharyngitis (J02) 2673.40 3.27% 22.36% 2.13%

False labor (O47) 2556.31 3.13% 25.49% 2.04%
Other disorders of urinary system (N39) 2324.45 2.85% 28.34% 1.86%

Male
(34.81%) Acute pharyngitis (J02) 2447.24 5.61% 5.61% 1.95%

Infectious gastroenteritis and colitis, unspecified (A09) 2294.56 5.26% 10.88% 1.83%
Acute nasopharyngitis [common cold] (J00) 1521.57 3.49% 14.37% 1.21%
AURI of multiple and unspecified sites (J06) 1519.94 3.49% 17.85% 1.21%

Abdominal and pelvic pain (R10) 1106.31 2.54% 20.39% 0.88%

Notes: This table classifies ED visits by sex and disease by presenting values for the five most common diagnoses per sex. The columns
show the number of visits between 2008 and 2022 (in thousands), the share of visits within the category (female and male), the cumu-
lative share of visits in the category, and the share of total visits across all conditions. The table starts with the most common sex and
diagnoses. The last row is the least common condition within that category. Estimated values with data from the Health Information
System of the Mexican Health Ministry. AURI: Acute upper respiratory infection.

Table A.4: Main diseases by ICD-10 Chapter

Chapter ICD-10 Name ICD-10
# Visits

(Ths.)

Share

Chapter

Cumulative %

Chapter

Share

Total

Other

(24.61%)
Encounter for supervision of normal pregnancy Z34 12677.35 41.11% 41.11% 10.12%

Abdominal and pelvic pain R10 2971.17 9.64% 50.75% 2.37%

Other Z35 1479.88 4.80% 55.55% 1.18%

Continued on next page
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Table A.4 – continued from previous page

Chapter ICD-10 Name ICD-10
# Visits

(Ths.)

Share

Chapter

Cumulative %

Chapter

Share

Total

External Causes

(15.25%)
Contact with venomous animals and plants T63 1652.99 8.65% 8.65% 1.32%

Injury of unspecified body region T14 1324.79 6.93% 15.59% 1.06%

Open wound of head S01 1144.59 5.99% 21.58% 0.91%

Respiratory

(14.54%)
Acute pharyngitis J02 5122.56 28.11% 28.11% 4.09%

Acute nasopharyngitis [common cold] J00 3170.28 17.40% 45.50% 2.53%

AURI of multiple and unspecified sites J06 3139.57 17.23% 62.73% 2.51%

Obstetric

(11.24%)
False labor O47 2556.92 18.15% 18.15% 2.04%

Infections of genitourinary tract in pregnancy O23 1619.75 11.50% 29.64% 1.29%

Encounter for full-term uncomplicated delivery O80 1353.37 9.61% 39.25% 1.08%

Digestive

(7.48%)
Gastritis and duodenitis K29 1594.70 17.02% 17.02% 1.27%

Cholelithiasis K80 960.22 10.25% 27.27% 0.77%

Cholecystitis K81 822.15 8.78% 36.05% 0.66%

Infectious Parasitic

(6.17%)
Infectious gastroenteritis and colitis, unspecified A09 5206.90 67.38% 67.38% 4.16%

Dengue fever [classical dengue] A90 312.20 4.04% 71.42% 0.25%

Other bacterial foodborne intoxications A05 257.84 3.34% 74.76% 0.21%

Genitourinary

(5.75%)
Other disorders of urinary system N39 3162.51 43.89% 43.89% 2.52%

Other abnormal uterine and vaginal bleeding N93 510.09 7.08% 50.97% 0.41%

Chronic kidney disease (CKD) N18 468.47 6.50% 57.47% 0.37%

Skin-Musculoskeletal

(4.00%)
Dorsalgia M54 1129.44 22.55% 22.55% 0.90%

Cutaneous abscess, furuncle and carbuncle L02 362.16 7.23% 29.78% 0.29%

Other and unspecified soft tissue disorders M79 339.78 6.78% 36.57% 0.27%

Circulatory

(2.96%)
Essential (primary) hypertension I10 2134.23 57.56% 57.56% 1.70%

Other cerebrovascular diseases I67 198.14 5.34% 62.90% 0.16%

Heart failure I50 187.99 5.07% 67.97% 0.15%

Endocrine Metabolic

(2.87%)
Type 2 diabetes mellitus E11 1419.05 39.49% 39.49% 1.13%

Endocrine Metabolic E14 884.88 24.63% 64.12% 0.71%

Other disorders of pancreatic internal secretion E16 285.33 7.94% 72.06% 0.23%

Mental

(1.62%)
Other anxiety disorders F41 545.13 26.93% 26.93% 0.44%

Continued on next page
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Table A.4 – continued from previous page

Chapter ICD-10 Name ICD-10
# Visits

(Ths.)

Share

Chapter

Cumulative %

Chapter

Share

Total

Alcohol related disorders F10 412.50 20.38% 47.31% 0.33%

Dissociative and conversion disorders F44 188.15 9.30% 56.61% 0.15%

Eye Ear

(1.36%)
Suppurative and unspecified otitis media H66 593.82 34.89% 34.89% 0.47%

Conjunctivitis H10 356.14 20.92% 55.81% 0.28%

Nonsuppurative otitis media H65 165.62 9.73% 65.54% 0.13%

Nervous System

(1.06%)
Epilepsy and recurrent seizures G40 352.47 26.48% 26.48% 0.28%

Other headache syndromes G44 293.91 22.08% 48.57% 0.23%

Migraine G43 279.68 21.02% 69.58% 0.22%

Neoplasms

(0.69%)
Leucomaine of uterus D25 193.02 22.41% 22.41% 0.15%

Other Neoplasm D48 66.49 7.72% 30.13% 0.05%

Benign lipomatous neoplasm D17 45.61 5.30% 35.43% 0.04%

Blood And Immune

(0.42%)
Other anemia D64 337.12 64.14% 64.14% 0.27%

Purpura and other hemorrhagic conditions D69 73.27 13.94% 78.08% 0.06%

Iron deficiency anemia D50 37.24 7.09% 85.17% 0.03%

Notes: This table classifies ED visits by ICD-10 chapter and disease, presenting values for the three most common diagnoses per chapter.

The columns show the number of visits between 2008 and 2022 (in thousands), the share of visits within the chapter, the cumulative

share of visits in the chapter, and the share of total visits across all conditions. The table starts with the most common chapters and

diagnoses. The last row is the least common condition within that chapter. Estimated values with data from the Health Information

System of the Mexican Health Ministry. AURI: Acute upper respiratory infection.
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Table A.3: Main diseases by age group

Age group ICD-10 Name # Visits
(Thousands)

Share of
Category

Cumulative
Share

Share of
Total

20 to 39
(36.89%) Encounter for supervision of normal pregnancy (Z34) 8997.20 19.46% 19.46% 7.18%

False labor (O47) 1763.34 3.81% 23.28% 1.41%
Other disorders of urinary system (N39) 1159.81 2.51% 25.79% 0.93%

Infections of genitourinary tract in pregnancy (O23) 1071.53 2.32% 28.11% 0.86%
Infectious gastroenteritis and colitis, unspecified (A09) 1065.61 2.31% 30.41% 0.85%

< 12
(22.79%) Acute pharyngitis (J02) 3455.47 12.10% 12.10% 2.76%

Infectious gastroenteritis and colitis, unspecified (A09) 2508.56 8.79% 20.89% 2.00%
Acute nasopharyngitis [common cold] (J00) 2328.77 8.16% 29.04% 1.86%
AURI of multiple and unspecified sites (J06) 2044.30 7.16% 36.20% 1.63%

Acute tonsillitis (J03) 647.17 2.27% 38.47% 0.52%

12 to 19
(15.59%) Encounter for supervision of normal pregnancy (Z34) 3518.03 18.00% 18.00% 2.81%

False labor (O47) 761.96 3.90% 21.90% 0.61%
other (Z35) 686.78 3.51% 25.42% 0.55%

Infections of genitourinary tract in pregnancy (O23) 526.51 2.69% 28.11% 0.42%
Infectious gastroenteritis and colitis, unspecified (A09) 509.50 2.61% 30.72% 0.41%

40 to 59
(14.80%) Essential (primary) hypertension (I10) 883.52 4.76% 4.76% 0.71%

Infectious gastroenteritis and colitis, unspecified (A09) 672.08 3.62% 8.39% 0.54%
Type 2 diabetes mellitus (E11) 642.65 3.46% 11.85% 0.51%

Other disorders of urinary system (N39) 624.69 3.37% 15.22% 0.50%
Abdominal and pelvic pain (R10) 555.43 2.99% 18.21% 0.44%

60 to 79
(7.77%) Essential (primary) hypertension (I10) 695.82 7.15% 7.15% 0.56%

Type 2 diabetes mellitus (E11) 505.95 5.20% 12.35% 0.40%
Infectious gastroenteritis and colitis, unspecified (A09) 350.54 3.60% 15.95% 0.28%

endocrine metabolic (E14) 298.12 3.06% 19.01% 0.24%
Other disorders of urinary system (N39) 293.15 3.01% 22.03% 0.23%

> 79
(2.16%) Essential (primary) hypertension (I10) 175.56 6.48% 6.48% 0.14%

Other chronic obstructive pulmonary disease (J44) 105.48 3.89% 10.37% 0.08%
Infectious gastroenteritis and colitis, unspecified (A09) 100.61 3.71% 14.09% 0.08%

Other disorders of urinary system (N39) 83.98 3.10% 17.19% 0.07%
Type 2 diabetes mellitus (E11) 81.40 3.00% 20.19% 0.06%

Notes: This table classifies ED visits by age group and disease by presenting values for the five most common diagnoses per category.
The columns show the number of visits between 2008 and 2022 (in thousands), the share of visits within the category (15 to 39, less
than 12, 40 to 70, and more than 79), the cumulative share of visits in the category, and the share of total visits across all conditions.
The table starts with the most common sex and diagnoses. The last row is the least common condition within that category. Estimated
values with data from the Health Information System of the Mexican Health Ministry. AURI: Acute upper respiratory infection.
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A.3 Additional results

Figure A.3: Mortality-temperature relationship in Mexico

Notes: This figure presents the point estimates of a PPMLE model of mortality rates per 100,000 people as function of temperatures.
The fixed-effects specification follows the preferred model of Cohen and Dechezleprêtre (2022). The effects refer to indicators for
daily temperature intervals with reference category (20-25] °C. The figures also presents the results for two levels of aggregation: the
contemporaneous model refers to the effect of temperatures in the the same day; the distributed lag model (thirty days) refers to the linear
combination of thirty temperature lags. Standard errors are clustered at the municipality level.

A.4 Climate projections

In this section, we outline the method used to estimate the impact of mid-century tem-

perature increases on emergency room (ER) admission costs resulting from temperature

changes.

To compute the climate change shock, we use a representative 20-year period from the

historical epoch (1991-2010) and decade-by-decade periods for future epochs (2031-2040,

2041-2050, 2051-2060), indexed by the superscripts e = {H, F}. We use projections devel-

oped within the CMIP6 framework (O’Neill et al., 2016) and incorporate five alternative

Global Climate Models (GCMs) to address uncertainty.

First, we compute the climate-change induced shifts in average daily temperature from

the historical period to the future period for each grid cell c, calendar day t, future decade

d, and GCM g (∆Tc,t,d,g). We aggregate grid cell-level shocks at the municipality level
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(i) using population weights. Next, we add ∆Ti,t,d,g to the observed average historical

temperatures used in our regressions (T Hist
) to obtain the projected temperature under

climate change (T Fut):

∆Ti,t,d,g = ∑
i
(T F

c,t,d,g − T H
c,t,d,g) (1)

T Fut
i,t,d,g = T Hist

i,t,d,g + ∆Ti,t,d,g (2)

We calculate the annual occurrence of daily temperature bins b for both historical and

future epochs. For clarity, we omit subscripts for municipality i, calendar day t, decade d,

and climate model g.

DHist.
b = 1[THist

b ∈ (THist
b T̃Hist

b )] (3)

DFut
b = 1[TFut

b ∈ (TFut
b T̃Fut

b )] (4)

Where

k ∈ {< 10, 10 − 20, 25 − 30,> 30} (5)

In a second step, we combine the estimated age group-specific (z) semi-elasticity (see Eq.

1) with climate change projections. This process accounts for cumulative effects over 30-

day lags to compute the relative change in admissions resulting from the temperature shift

from DHist to DFut.

Ψ̃z
i,d,g =

∑6
b=0 DFut

i,d,g,bexp(∑30
j=0 λ̃z

b)

∑6
b=0 DHist

i,d,g,bexp(∑30
j=0 λ̃z

b)
− 1 (6)

We calculate the absolute change in admissions Γ̃ by assuming that the average age-

specific admission rate (yz) remains constant from the historical period to future decades.

At the same time, the population increases uniformly at the decade-specific rate θd across
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all age groups, according to the SSP2 demographic shifts (estimated in Riahi et al. (2017)):

Γ̃z
i,d,g = Ψ̃z

i,d,g · (yz · pi · θd) (7)

Where pi is the historical population in municipality i expressed as people per 100k.

Finally, we compute annual expenditures by decade and age group C, averaging across

the GCMs and the entire set of municipalities in our sample. We exploit data from of-

ficial government estimates from medical care unit costs in Mexico for the year 2024 by

the FIMSS (2023). This data provides an average cost per admission (ca) of 207 USD and

an average cost of admissions leading in hospitalizations (ch) of 691 USD. Moreover, we

assume the hospitalization rate relative to total admissions s observed in our sample re-

mains constant over time:

Cd =

∑g

[
∑i(Γ̃z

i,d,g · ca + Γ̃z
i,d,g · ch · s)

]
g

(8)
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